Skip to main content
Log in

Fabrication of polydopamine decorated carbon cloth as support material to anchor CeO2 nanoparticles for electrochemical detection of ethanol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A flexible CeO2 nanostructured polydopamine-modified carbon cloth (CeO2/PDA/CC) interface was fabricated via electrodeposition for ethanol detection. The fabrication method involved two consecutive electrochemical steps in which dopamine was firstly electrodeposited on carbon fibers, followed by the electrochemical growth of CeO2 nanoparticles. The CeO2/PDA-based electroactive interface exerts an impressive electrochemical performance on the flexible sensor due to strong synergistic effect of the PDA functionalization with more active sites. Moreover, catalytic activity of CeO2 nanostructures anchored on highly conductive CC incorporate superior electrocatalytic performance of the fabricated interface. The designed electrochemical sensor showed a wide response to ethanol in the linear range 1 to 25 mM with a detection limit of 0.22 mM. The CeO2/PDA/CC flexible sensor showed good anti-interference ability and excellent repeatability and reproducibility (RSD = 1.67%). The fabricated interface performed well in saliva samples with satisfactory recoveries, corroborating the viability of CeO2/PDA/CC integrated interface for practical implementation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu Y et al (2020) Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. Advanced materials 32(15):1902083

    Article  CAS  Google Scholar 

  2. Yang A, Yan F (2020) Flexible electrochemical biosensors for health monitoring. ACS Applied Electronic Materials 3(1):53–67

    Article  Google Scholar 

  3. Dinh T et al (2020) Advances in rational design and materials of high-performance stretchable electromechanical sensors. Small 16(14):1905707

    Article  CAS  Google Scholar 

  4. Wang S et al (2016) Flexible substrate-based devices for point-of-care diagnostics. Trends in biotechnology 34(11):909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao S et al (2017) Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS applied materials & interfaces 9(14):12147–12164

    Article  CAS  Google Scholar 

  6. Shi H et al (2020) Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale 12(9):5261–5285

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q et al (2016) Hydrazine sensor based on Co3O4/rGO/carbon cloth electrochemical electrode. Advanced Materials Interfaces 3(12):1500691

    Article  Google Scholar 

  8. Cheng S et al (2019) In situ formation of metal–organic framework derived CuO polyhedrons on carbon cloth for highly sensitive non-enzymatic glucose sensing. J Materials Chem B 7(32):4990–4996

    Article  CAS  Google Scholar 

  9. Yuan K et al (2021) Copper nanoflowers on carbon cloth as a flexible electrode toward both enzymeless electrocatalytic glucose and H2O2. Electroanalysis 33(7):1800–1809

  10. Shen Y et al (2020) Nanosilver and protonated carbon nitride co-coated carbon cloth fibers based non-enzymatic electrochemical sensor for determination of carcinogenic nitrite. Sci The Total Environ 742:140622

    Article  CAS  Google Scholar 

  11. Yao Z et al (2012) Highly efficient electrocatalytic performance based on Pt nanoflowers modified reduced graphene oxide/carbon cloth electrode. J Materials Chem 22(27):13707–13713

    Article  CAS  Google Scholar 

  12. Yang M et al (2018) Flexible binder-free CuS/polydopamine-coated carbon cloth for high voltage supercapacitors. Energy Technology 6(9):1852–1858

    Article  CAS  Google Scholar 

  13. Huang N et al (2015) Multifunctional electrochemical platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide: construction and application. ACS applied materials & interfaces 7(32):17935–17946

    Article  CAS  Google Scholar 

  14. Pınar PT, Yardım Y, Şentürk Z (2018) Electrochemical oxidation of ranitidine at poly (dopamine) modified carbon paste electrode: its voltammetric determination in pharmaceutical and biological samples based on the enhancement effect of anionic surfactant. Sensors and Actuators B: Chemical 273:1463–1473

    Article  Google Scholar 

  15. Cai J et al (2017) Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors. Small 13(19):1604240

    Article  Google Scholar 

  16. Almeida LC et al (2019) Electrosynthesis of polydopamine films-tailored matrices for laccase-based biosensors. Applied Surface Science 480:979–989

    Article  CAS  Google Scholar 

  17. Fallatah A, Almomtan M, Padalkar S (2019) Cerium oxide based glucose biosensors: influence of morphology and underlying substrate on biosensor performance. ACS Sustainable Chem & Engineering 7(9):8083–8089

    Article  CAS  Google Scholar 

  18. Das J et al (2017) Nanoceria-mediated delivery of doxorubicin enhances the anti-tumour efficiency in ovarian cancer cells via apoptosis. Scientific Reports 7(1):1–12

    Article  Google Scholar 

  19. Charbgoo F, Ramezani M, Darroudi M (2017) Bio-sensing applications of cerium oxide nanoparticles: advantages and disadvantages. Biosensors and Bioelectronics 96:33–43

    Article  CAS  PubMed  Google Scholar 

  20. Alizadeh N et al (2020) Intrinsic enzyme-like activities of cerium oxide nanocomposite and its application for extracellular H2O2 detection using an electrochemical microfluidic device. ACS Omega 5(21):11883–11894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahmadvand H et al (2020) Room temperature and high response ethanol sensor based on two dimensional hybrid nanostructures of WS 2/GONRs. Scientific Reports 10(1):1–9

    Article  Google Scholar 

  22. Jia C, Batterman S, Godwin C (2008) VOCs in industrial, urban and suburban neighborhoods, Part 1: indoor and outdoor concentrations, variation, and risk drivers. Atmospheric Environment 42(9):2083–2100

    Article  CAS  Google Scholar 

  23. Log T, Moi AL (2018) Ethanol and methanol burn risks in the home environment. Int J Environ Res Public Health 15(11):2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lachenmeier DW (2008) Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J Occup Med Toxicol 3(1):1–16

    Article  Google Scholar 

  25. Khan SB et al (2011) Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci Total Environment 409(15):2987–2992

    Article  CAS  Google Scholar 

  26. Niu G et al (2019) NiO nanoparticle-decorated SnO 2 nanosheets for ethanol sensing with enhanced moisture resistance. Microsystems & Nanoengineering 5(1):1–8

    Article  CAS  Google Scholar 

  27. Tian G et al (2016) Quantification of ethanol in plasma by electrochemical detection with an unmodified screen printed carbon electrode. Scientific reports 6(1):1–6

    Google Scholar 

  28. Berghaus G, Ramaekers JG, Drummer OH (2007) Demands on scientific studies in different fields of forensic medicine and forensic sciences: traffic medicine—impaired driver: alcohol, drugs, diseases. Forensic science international 165(2–3):233–237

    Article  CAS  PubMed  Google Scholar 

  29. Bihar E et al (2016) A disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Scientific reports 6(1):1–6

    Article  Google Scholar 

  30. Vello TP et al (2017) A simple capacitive method to evaluate ethanol fuel samples. Scientific reports 7(1):1–7

    Article  Google Scholar 

  31. Lee Y-M et al (2013) Low temperature solution-processed ZnO nanorod arrays with application to liquid ethanol sensors. Sensors and Actuators A: Physical 189:307–312

    Article  CAS  Google Scholar 

  32. Blanco S et al (2015) A novel nickel nanowire amperometric sensor: Direct current vs alternating current strategies for ethanol, acetaldehyde and acetylcholine detection. J Electroanal Chem 740:61–67

    Article  CAS  Google Scholar 

  33. Wu L, Zhang X, Ju H (2007) Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Analytical chemistry 79(2):453–458

    Article  CAS  PubMed  Google Scholar 

  34. Teymourian H, Salimi A, Hallaj R (2012) Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing. Talanta 90:91–98

    Article  CAS  PubMed  Google Scholar 

  35. Lee C-A, Tsai Y-C (2009) Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol. Sensors and Actuators B: Chemical 138(2):518–523

    Article  CAS  Google Scholar 

  36. Mahesh K et al (2018) Flexible sensor for dopamine detection fabricated by the direct growth of α-Fe2O3 nanoparticles on carbon cloth. Applied Surface Science 427:387–395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MHN acknowledges the financial support provided by HEC (20-4993/R&D/HEC/14/614).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean Louis Marty or Mian Hasnain Nawaz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1183 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, R., Riaz, S., Bano, S. et al. Fabrication of polydopamine decorated carbon cloth as support material to anchor CeO2 nanoparticles for electrochemical detection of ethanol. Microchim Acta 190, 172 (2023). https://doi.org/10.1007/s00604-023-05707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05707-0

Keywords

Navigation