Skip to main content
Log in

Bi-enzyme competition based on ZIF-67 co-immobilization for real-time monitoring of exocellular ATP

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Monitoring exocellular adenosine-5′-triphosphate (ATP) is a demanding task but the biosensor development is limited by the low concentration and rapid degradation of ATP. Herein, we developed a simple yet effective biosensor based on ZIF-67 loaded with bi-enzymes of glucose (GOx) and hexokinase (HEX) for effective detection of ATP. In the confined space of the porous matrix, the bi-enzymes competed for the glucose substrate in the presence of ATP, facilitating the biosensor to detect low ATP concentrations down to the micromole level (3.75 μM) at working potential of 0.55 V (vs. Ag/AgCl). Furthermore, ZIF-67 with cobalt served as a porous matrix to specifically adsorb ATP molecules, allowing it to differentiate isomers with sensitivity of 0.53 nA/μM, RSD of 5.4%, and recovery rate of 93.3%. We successfully applied the fabricated biosensor to measure ATP secreted from rat PC12 cells in the pericellular space thus realizing time-resolving measurement. This work paved the path for real-time monitoring of ATP released by cells, which will aid in understanding tumor cell glycolysis and immune responses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99:16–34. https://doi.org/10.1113/expphysiol.2013.071951

    Article  CAS  Google Scholar 

  2. Langen P, Hucho F (2008) Karl Lohmann and the discovery of ATP. Angew Chem Int Ed Engl 47:1824–1827. https://doi.org/10.1002/anie.200702929

    Article  CAS  Google Scholar 

  3. Wang Y, Zhang D, Zeng Y, Ye X, Sun Y, Zhou W et al (2021) Discriminative intracellular and extracellular ATP detection based on magnetically controlled antimicrobial peptide. Sensors Actuators B Chem 334:129609. https://doi.org/10.1016/j.snb.2021.129609

    Article  CAS  Google Scholar 

  4. Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36:293–303. https://doi.org/10.1038/onc.2016.206

    Article  CAS  Google Scholar 

  5. Wang S, Wang R, Jiang D, Zhang N, Jiang W (2022) Enzyme-embedded ZIF-8/DNA nanocomposite probe for live cells imaging and sensitive detection of ATP. Sensors Actuators B Chem 357:131400. https://doi.org/10.1016/j.snb.2022.131400

    Article  CAS  Google Scholar 

  6. Moesta AK, Li XY, Smyth MJ (2020) Targeting CD39 in cancer. Nat Rev Immunol 20:739–755. https://doi.org/10.1038/s41577-020-0376-4

    Article  CAS  Google Scholar 

  7. Vultaggio-Poma V, Sarti AC, Di Virgilio F (2020) Extracellular ATP: a feasible target for cancer therapy. Cells 9(11):2496. https://doi.org/10.3390/cells9112496

  8. Kucherenko IS, Didukh DY, Soldatkin OO, Soldatkin AP (2014) Amperometric biosensor system for simultaneous determination of adenosine-5′-triphosphate and glucose. Anal Chem 86:5455–5462. https://doi.org/10.1021/ac5006553

    Article  CAS  Google Scholar 

  9. Burnstock G, Verkhratsky A (2012) Purinergic signaling. WIREs Membr Transp Signal 1:116–125. https://doi.org/10.1002/wmts.14

  10. Ma Y, Geng F, Wang Y, Xu M, Shao C, Qu P et al (2019) Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition. Biosens Bioelectron 134:36–41. https://doi.org/10.1016/j.bios.2019.03.047

    Article  CAS  Google Scholar 

  11. Jiang M, Wang C, Zhang X, Cai C, Ma Z, Chen J et al (2021) A cellular nitric oxide sensor based on porous hollow fiber with flow-through configuration. Biosens Bioelectron 191:113442. https://doi.org/10.1016/j.bios.2021.113442

    Article  CAS  Google Scholar 

  12. Kueng A, Kranz C, Mizaikoff B (2005) Imaging of ATP membrane transport with dual micro-disk electrodes and scanning electrochemical microscopy. Biosens Bioelectron 21:346–353. https://doi.org/10.1016/j.bios.2004.10.020

    Article  CAS  Google Scholar 

  13. Wu H, Shi C, Zhu Q, Li Y, Xu Z, Wei C et al (2021) Capillary-driven blood separation and in-situ electrochemical detection based on 3D conductive gradient hollow fiber membrane. Biosens Bioelectron 171:112722. https://doi.org/10.1016/j.bios.2020.112722

    Article  CAS  Google Scholar 

  14. Compagnone D, Guilbault GG (1997) Glucose oxidase/hexokinase electrode for the determination of ATP. Anal Chim Acta 340:109–113. https://doi.org/10.1016/S0003-2670(96)00451-5

    Article  CAS  Google Scholar 

  15. Cui Y, Barford JP, Renneberg R (2008) Amperometric trienzyme ATP biosensors based on the coimmobilization of salicylate hydroxylase, glucose-6-phosphate dehydrogenase, and hexokinase. Sens Actuators B Chem 132:1–4. https://doi.org/10.1016/j.snb.2008.01.001

    Article  CAS  Google Scholar 

  16. Kueng A, Kranz C, Mizaikoff B (2004) Amperometric ATP biosensor based on polymer entrapped enzymes. Biosens Bioelectron 19:1301–1307. https://doi.org/10.1016/j.bios.2003.11.023

    Article  CAS  Google Scholar 

  17. Liu S, Sun Y (2007) Co-immobilization of glucose oxidase and hexokinase on silicate hybrid sol-gel membrane for glucose and ATP detections. Biosens Bioelectron 22:905–911. https://doi.org/10.1016/j.bios.2006.03.019

    Article  CAS  Google Scholar 

  18. Zhu Q, Liang B, Liang Y, Ji L, Cai Y, Wu K et al (2020) 3D bimetallic Au/Pt nanoflowers decorated needle-type microelectrode for direct in situ monitoring of ATP secreted from living cells. Biosens Bioelectron 153:112019. https://doi.org/10.1016/j.bios.2020.112019

    Article  CAS  Google Scholar 

  19. Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J et al (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593. https://doi.org/10.1039/C4CS00003J

    Article  CAS  Google Scholar 

  20. O’Keeffe M (2009) Design of MOFs and intellectual content in reticular chemistry: a personal view. Chem Soc Rev 38:1215–1217. https://doi.org/10.1039/B802802H

    Article  Google Scholar 

  21. Perry Iv JJ, Perman JA, Zaworotko MJ (2009) Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem Soc Rev 38:1400–1417. https://doi.org/10.1039/B807086P

    Article  Google Scholar 

  22. Tranchemontagne DJ, Mendoza-Cortés JL, O’Keeffe M, Yaghi OM (2009) Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem Soc Rev 38:1257–1283. https://doi.org/10.1039/B817735J

    Article  CAS  Google Scholar 

  23. Li J, He YL, Tan L, Zhang PP, Peng XB, Oruganti A et al (2018) Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology. Nat Catal 1:787–793. https://doi.org/10.1038/s41929-018-0144-z

    Article  CAS  Google Scholar 

  24. Wang CT, Fang W, Wang L, Xiao FS (2021) Fischer-Tropsch reaction within zeolite crystals for selective formation of gasoline-ranged hydrocarbons. J Energy Chem 54:429–433. https://doi.org/10.1016/j.jechem.2020.06.006

    Article  CAS  Google Scholar 

  25. Wang YJ, Zhan WT, Chen ZJ, Chen JM, Li XG, Li YW (2020) Advanced 3D hollow-out ZnZrO@C combined with hierarchical zeolite for highly active and selective CO hydrogenation to aromatics. ACS Catal 10:7177–7187. https://doi.org/10.1021/acscatal.0c01418

    Article  CAS  Google Scholar 

  26. Chen W-H, Vázquez-González M, Zoabi A, Abu-Reziq R, Willner I (2018) Biocatalytic cascades driven by enzymes encapsulated in metal–organic framework nanoparticles. Nat Catal 1:689–695. https://doi.org/10.1038/s41929-018-0117-2

    Article  CAS  Google Scholar 

  27. Deng J, Wang K, Wang M, Yu P, Mao L (2017) Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. J Am Chem Soc 139:5877–5882. https://doi.org/10.1021/jacs.7b01229

    Article  CAS  Google Scholar 

  28. Wang Z, Zhou X, Li Y, Huang Z, Han J, Xie G et al (2021) Sensing ATP: zeolitic imidazolate framework-67 is superior to aptamers for target recognition. Anal Chem 93:7707–7713. https://doi.org/10.1021/acs.analchem.1c00976

    Article  CAS  Google Scholar 

  29. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637. https://doi.org/10.1021/cr100440g

    Article  CAS  Google Scholar 

  30. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120. https://doi.org/10.3109/10409239509085140

    Article  CAS  Google Scholar 

  31. Todorov LD, Mihaylova-Todorova S, Craviso GL, Bjur RA, Westfall DP (1996) Evidence for the differential release of the cotransmitters ATP and noradrenaline from sympathetic nerves of the guinea-pig vas deferens. J Physiol 496(Pt 3):731–748. https://doi.org/10.1113/jphysiol.1996.sp021723

    Article  CAS  Google Scholar 

  32. Fabbro A, Skorinkin A, Grandolfo M, Nistri A, Giniatullin R (2004) Quantal release of ATP from clusters of PC12 cells. J Physiol 560:505–517. https://doi.org/10.1113/jphysiol.2004.068924

  33. Mir TA, Shinohara H, Shimizu Y (2011) Enzyme-luminescence method: tool for evaluation of neuronal differentiation based on real-time monitoring of dopamine release response from PC12 cells. Anal Methods 3:837–841. https://doi.org/10.1039/C0AY00769B

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (61801160 and 81730108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dajing Chen or Tian Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6338 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Li, J., Liu, Y. et al. Bi-enzyme competition based on ZIF-67 co-immobilization for real-time monitoring of exocellular ATP. Microchim Acta 190, 71 (2023). https://doi.org/10.1007/s00604-023-05652-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05652-y

Keywords

Navigation