Skip to main content
Log in

Colorimetric platform based on synergistic effect between bacteriophage and AuPt nanozyme for determination of Yersinia pseudotuberculosis

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract 

The development of a novel colorimetric method is reported, using vB_YepM_ZN18 phages along with AuPt nanozyme for the sensitive detection of Y. pseudotuberculosis. The phage used in this work has been extracted from hospital sewer water and is highly specific toward Y. pseudotuberculosis. The synthesized AuPt NPs possess peroxidase-like activity, which is suitable in the development of nanozyme based detection system. Furthermore, phages@MB and AuPt@phages are added into the bacterial samples for co-incubation, forming an intercalated complex. The magnetic separation and absorbance analysis of enzymatic reaction are carried out for the detection of targeted bacteria. The proposed method has a limit of detection of 14 CFU/mL, a wide linear range from 2.50 × 101 ~ 2.50 × 107 CFU/mL and the assay completion time is 40 min. Benefitting from the outperformance of this sensor, we have successfully employed the developed sensing platform for the detection of Y. pseudotuberculosis in food industry and hospital specimens.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bonardi S, Bruini I, D’incau M, Van Damme I, Carniel E, Brémont S, Cavallini P, Tagliabue S, Brindani F (2016) Detection, seroprevalence and antimicrobial resistance of Yersinia enterocolitica and Yersinia pseudotuberculosis in pig tonsils in Northern Italy. Int J Food Microbiol 235:125–132

    Article  CAS  Google Scholar 

  2. Lee YJ, Kim J, Jeon JH, Seok H, Choi WS, Chang E-A, Yim HJ, Park DW (2021) Extraintestinal manifestation of Yersinia pseudotuberculosis bacteremia as acute hepatitis: case report and review of the literature. Pathogens 10(10):1255

    Article  Google Scholar 

  3. Sundin C, Zetterström CE, Vo DD, Brkljača R, Urban S, Elofsson M (2020) Exploring resveratrol dimers as virulence blocking agents–attenuation of type III secretion in Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Sci Rep 10(1):1–11

    Article  Google Scholar 

  4. Bliska JB, Brodsky IE, Mecsas J (2021) Role of the Yersinia pseudotuberculosis virulence plasmid in pathogen-phagocyte interactions in mesenteric lymph nodes. EcoSal Plus 9(2):eESP-0014–2021

  5. Wielkoszynski T, Moghaddam A, Bäckman A, Broden J, Piotrowski R, Mond-Paszek R, Kozarenko A, Ny T, Wilczynska M (2018) Novel diagnostic ELISA test for discrimination between infections with Yersinia enterocolitica and Yersinia pseudotuberculosis. Eur J Clin Microbiol Infect Dis 37(12):2301–2306

    Article  CAS  Google Scholar 

  6. Iwata K, Morishita N, Masuda Y, Kodama M, Otani S, Naito A (2020) Unilateral inguinal lymphadenitis caused by Yersinia pseudotuberculosis. A case report. J Infect Chemother 26(7):762–764

    Article  CAS  Google Scholar 

  7. Farooq U, Yang Q, Ullah MW, Wang S (2018) Bacterial biosensing: recent advances in phage-based bioassays and biosensors. Biosens Bioelectron 118:204–216

    Article  CAS  Google Scholar 

  8. Asif M, Xu Y, Xiao F, Sun Y (2021) Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. Chem Eng J 423:130189. https://doi.org/10.1016/j.cej.2021.130189

    Article  CAS  Google Scholar 

  9. Aziz A, Asif M, Ashraf G, Iftikhar T, Hu J, Xiao F, Wang S (2022) Boosting electrocatalytic activity of carbon fiber@fusiform-like copper-nickel LDHs: sensing of nitrate as biomarker for NOB detection. J Hazard Mater 422:126907. https://doi.org/10.1016/j.jhazmat.2021.126907

    Article  CAS  Google Scholar 

  10. Asif M, Ashraf G, Aziz A, Iftikhar T, Wang Z, Xiao F, Sun Y (2022) Tuning the Redox chemistry of copper oxide nanoarchitectures integrated with rGOP via facet engineering: sensing H2S toward SRB detection. ACS Appl Mater Interfaces 14(17):19480–19490. https://doi.org/10.1021/acsami.2c02119

    Article  CAS  Google Scholar 

  11. Janczuk M, Niedziółka-Jönsson J, Szot-Karpińska K (2016) Bacteriophages in electrochemistry: a review. J Electroanal Chem 779:207–219. https://doi.org/10.1016/j.jelechem.2016.05.019

    Article  CAS  Google Scholar 

  12. Asif M, Aziz A, Wang Z, Ashraf G, Wang J, Luo H, Chen X, Xiao F, Liu H (2019) Hierarchical CNTs@CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal Chem 91(6):3912–3920. https://doi.org/10.1021/acs.analchem.8b04685

    Article  CAS  Google Scholar 

  13. Hussain W, Ullah MW, Farooq U, Aziz A, S Wang (2021) Bacteriophage-based advanced bacterial detection: concept, mechanisms, and applications. Biosens Bioelectron 112973

  14. Aslan H, Ekinci A, Aslan I (2020) Nucleic acid–based methods in the detection of foodborne pathogens, natural remedies for pest, disease and weed control, Elsevier pp. 143–161

  15. Pang B, Zhao C, Li L, Song X, Xu K, Wang J, Liu Y, Fu K, Bao H, Song D (2018) Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157: H7 detection. Anal Biochem 542:58–62

    Article  CAS  Google Scholar 

  16. Wu Y, Wu M, Liu C, Tian Y, Fang S, Yang H, Li B, Liu Q (2021) Colloidal gold immunochromatographic test strips for broad-spectrum detection of Salmonella. Food Control 126:108052

    Article  CAS  Google Scholar 

  17. Petsios S, Fredriksson-Ahomaa M, Sakkas H, Papadopoulou C (2016) Conventional and molecular methods used in the detection and subtyping of Yersinia enterocolitica in food. Int J Food Microbiol 237:55–72

    Article  CAS  Google Scholar 

  18. Richter Ł, Bielec K, Leśniewski A, Łoś M, Paczesny J, Hołyst R (2017) Dense layer of bacteriophages ordered in alternating electric field and immobilized by surface chemical modification as sensing element for bacteria detection. ACS Appl Mater Interfaces 9(23):19622–19629. https://doi.org/10.1021/acsami.7b03497

    Article  CAS  Google Scholar 

  19. Justino CIL, Duarte AC, Rocha-Santos TAP (2016) Critical overview on the application of sensors and biosensors for clinical analysis. TrAC, Trends Anal Chem 85:36–60. https://doi.org/10.1016/j.trac.2016.04.004

    Article  CAS  Google Scholar 

  20. Rippa M, Castagna R, Pannico M, Musto P, Borriello G, Paradiso R, Galiero G, BollettiCensi S, Zhou J, Zyss J (2017) Octupolar metastructures for a highly sensitive, rapid, and reproducible phage-based detection of bacterial pathogens by surface-enhanced Raman scattering. ACS Sensors 2(7):947–954

    Article  CAS  Google Scholar 

  21. Wu L, Song Y, Luan T, Ma L, Su L, Wang S, Yan X (2016) Specific detection of live Escherichia coli O157:H7 using tetracysteine-tagged PP01 bacteriophage. Biosens Bioelectron 86:102–108. https://doi.org/10.1016/j.bios.2016.06.041

    Article  CAS  Google Scholar 

  22. Niyomdecha S, Limbut W, Numnuam A, Kanatharana P, Charlermroj R, Karoonuthaisiri N, Thavarungkul P (2018) Phage-based capacitive biosensor for Salmonella detection. Talanta 188:658–664

    Article  CAS  Google Scholar 

  23. Wang X-Y, Yang J-Y, Wang Y-T, Zhang H-C, Chen M-L, Yang T, Wang J-H (2021) M13 phage-based nanoprobe for sers detection and inactivation of staphylococcus aureus. Talanta 221:121668

    Article  CAS  Google Scholar 

  24. Liang Q, Xi J, Gao XJ, Zhang R, Yang Y, Gao X, Yan X, Gao L, Fan K (2020) A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today 35:100935

    Article  CAS  Google Scholar 

  25. Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W (2019) Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev 48(14):3683–3704

    Article  CAS  Google Scholar 

  26. Wang X, Wei H (2020) Peroxidase-like nanozyme sensing arrays for versatile analytes. J Nanopart Res 22(1):22. https://doi.org/10.1007/s11051-019-4738-4

    Article  CAS  Google Scholar 

  27. Han J, Yoon J (2020) Supramolecular nanozyme-based cancer catalytic therapy. ACS Appl Bio Mater 3(11):7344–7351

    Article  CAS  Google Scholar 

  28. Song W, Zhao B, Wang C, Ozaki Y, Lu X (2019) Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J Mater Chem B 7(6):850–875

    Article  CAS  Google Scholar 

  29. Lin Z, Zhang X, Liu S, Zheng L, Bu Y, Deng H, Chen R, Peng H, Lin X, Chen W (2020) Colorimetric acid phosphatase sensor based on MoO3 nanozyme. Anal Chim Acta 1105:162–168

    Article  CAS  Google Scholar 

  30. Cai S, Yang R (2020) Noble Metal-Based Nanozymes. Springer, Nanozymology, pp 331–365

    Google Scholar 

  31. Liu Q, Zhang A, Wang R, Zhang Q, Cui D (2021) A review on metal-and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Letters 13(1):1–53

    Article  Google Scholar 

  32. Lu C, Tang L, Gao F, Li Y, Liu J, Zheng J (2021) DNA-encoded bimetallic Au-Pt dumbbell nanozyme for high-performance detection and eradication of Escherichia coli O157:H7. Biosens Bioelectron 187:113327. https://doi.org/10.1016/j.bios.2021.113327

    Article  CAS  Google Scholar 

  33. Pietrzak M, Ivanova P (2021) Bimetallic and multimetallic nanoparticles as nanozymes. Sens Actuators, B Chem 336:129736

    Article  CAS  Google Scholar 

  34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, Cold spring harbor laboratory press

Download references

Funding

This work was supported by the National Key Research and Development Program of China under Grant 2017YFC1104402 and 2022T150232 and China Postdoctoral Science Foundation (2022T150232).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Asif or Shenqi Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 955 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Wu, D., Aziz, A. et al. Colorimetric platform based on synergistic effect between bacteriophage and AuPt nanozyme for determination of Yersinia pseudotuberculosis. Microchim Acta 190, 76 (2023). https://doi.org/10.1007/s00604-023-05643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05643-z

Keywords

Navigation