Skip to main content
Log in

Facile synthesis of hollow microtubular COF as enrichment probe for quantitative detection of ultratrace quinones in mice plasma with APGC-MS/MS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A hollow microtubular covalent organic framework (denoted as TatDha-COF) was synthesized by solvothermal method for the enrichment and determination of quinones. The TatDha-COF showed large specific surface area (2057 m2 g−1), good crystal structure, ordered pore size distribution (2.3 nm), stable chemical properties and good reusability. Accordingly, a simple and efficient method based on dispersive solid-phase extraction (d-SPE) and atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS) was developed for the determination of quinones in complex samples. The established method demonstrated a wide liner range, good linearity (r>0.9990), high enrichment factors (EFs, 24–69-folds) and low detection limits (LODs, 0.200–30.0 pg L−1, S/N≥3). On this basis, the suggested method was successfully applied to sensitively detect the eight ultratrace quinones in mice plasma. Overall, the established method has provided a powerful tool for the enrichment and detection of ultratrace quinones in complex samples, presenting the promising application of TatDha-COF in sample pretreatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Najjar NE, Muhtasib HG, Ketola RA, Vuorela P, Urtti A, Vuorela H (2011) The chemical and biological activities of quinones: overview and implications in analytical detection. Phytochem Rev. 10:353–370. https://doi.org/10.1007/s11101-011-9209-1

    Article  CAS  Google Scholar 

  2. Xia T, Korge P, Weiss JN, Li N, Venkatesen MI, Sioutas C, Nel A (2004) Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ. Heath. Perspect. 112:1347–1358. https://doi.org/10.1289/ehp.7167

    Article  CAS  Google Scholar 

  3. Honda A, Chowdhury PH, Ito S, Okano H, Onishi T, Kawaryu Y, Ueda K, Takano H (2017) Synergic effects of 9,10-phenanthrenequinone and cadmium on proinflammatory responses in airway epithelial cells. Environ. Toxicol. Pharmac. 52:276–279. https://doi.org/10.1016/j.etap.2017.04.019

    Article  CAS  Google Scholar 

  4. Wei YJ, Han IK, Hu M, Shao M, Zhang JF, Tang XY (2010) Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans. Chemosphere. 81:1280–1285. https://doi.org/10.1016/j.chemosphere.2010.08.055

    Article  CAS  Google Scholar 

  5. Shang Y, Fan LL, Feng JL, Lv SL, Wu MH, Li B, Zang YS (2013) Genotoxic and inflammatory effects of organic extracts from traffic-related particulate matter in human lung epithelial A549 cells: the role of quinones. Toxicol. In. Vitro. 27:922–931. https://doi.org/10.1016/j.tiv.2013.01.008

    Article  CAS  Google Scholar 

  6. Hiyoshi K, Takano H, Inoue KI, Ichinose T, Yanagisawa R, Tomura S, Kumagai Y (2005) Effects of phenanthraquinone on allergic airway inflammation in mice. Clin. Exp. Allergy. 35:1243–1248. https://doi.org/10.1111/j.1365-2222.2005.02297.x

    Article  CAS  Google Scholar 

  7. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem. Res. Toxicol. 13:135–160. https://doi.org/10.1021/tx9902082

    Article  CAS  Google Scholar 

  8. Harvey RG, Penning TM, Jarabak J, Zhang FJ (2000) Role of quinone metabolites in PAH carcinogenesis. Polycyclic Aromatic Compounds. 16(1-4):13–20. https://doi.org/10.1080/10406639908020568

    Article  Google Scholar 

  9. Barbosa E, Bergamini MF, Marcolino-Junior LH (2021) A simple, fast, and cost-effective analytical method for monitoring active quinones in a H2O2 production process. Microchemical Journal. 163:105861. https://doi.org/10.1016/j.microc.2020.105861

    Article  CAS  Google Scholar 

  10. Parsa F, Ghorbanloo M, Morasli A, Wang J, Junk PC, Retailleau P (2020) Azobenzene based 2D-MOF for high selective quinone fluorescence sensing performance. Inorganica Chimica Acta. 510:119699. https://doi.org/10.1016/j.ica.2020.119699

    Article  CAS  Google Scholar 

  11. Hsu KJ, Hsieh CL, Tsai CJ, Kong KV (2021) Probing molecular-scale oxidative generation of quinone methides and their transformation using tip-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 12:1110–1115. https://doi.org/10.1021/acs.jpclett.0c03313

    Article  CAS  Google Scholar 

  12. Luo K, Carmella SG, Zhao YC, Tang MK, Hecht SS (2020) Identification and quantification of phenanthrene ortho-quinones in human urine and their association with lipid peroxidation. Environmental Pollution. 266:115342. https://doi.org/10.1016/j.envpol.2020.115342

    Article  CAS  Google Scholar 

  13. Toriba A, Homma C, Kita M, Uozaki W, Boongla Y, Orakij W, Tang N, Kameda T, Hayakawa K (2016) Simultaneous determination of polycyclic aromatic hydrocarbon quinones by gas chromatography-tandem mass spectrometry, following a one-pot reductive trimethylsilyl derivatization. J. Chromatogr. A. 1459:89–100. https://doi.org/10.1016/j.chroma.2016.06.034

    Article  CAS  Google Scholar 

  14. Organtini KL, Haimovici L, Jobst KJ, Reiner EJ, Ladak A, Stevens D, Cochran JW, Dorman FL (2015) Comparison of atmospheric pressure ionization gas chromatography-triple quadrupole mass spectrometry to traditional high-resolution mass spectrometry for the identification and quantification of halogenated dioxins and furans. Anal. Chem. 87:7902–7908. https://doi.org/10.1021/acs.analchem.5b01705

    Article  CAS  Google Scholar 

  15. Clark KD, Zhang C, Anderson JL (2016) Sample preparation for bioanalytical and pharmaceutical analysis. Anal. Chem. 88:11262–11270. https://doi.org/10.1021/acs.analchem.6b02935

    Article  CAS  Google Scholar 

  16. Yu J, Di SY, Ning T, Yang HC, Zhu GT, Pin C, Yu H, Wang JH, Zhu SK (2020) Rational design and synthesis of magnetic covalent organic frameworks for controlling the selectivity and enhancing the extraction efficiency of polycyclic aromatic hydrocarbons. Microchim. Acta. 187:531. https://doi.org/10.1007/s00604-020-04520-3

    Article  CAS  Google Scholar 

  17. Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science. 310:1166. https://doi.org/10.1126/science.1120411

    Article  CAS  Google Scholar 

  18. Yap PL, Nine MJ, Hassan K, Tung TT, Tran DNH, Losic D (2020) Graphene-based sorbents for multipollutants removal in water: a review of recent progress. Adv. Funct. Mater. 31:2007356. https://doi.org/10.1002/adfm.202007356

    Article  CAS  Google Scholar 

  19. Cai YQ, Jiang GB, Liu JF, Zhou QX (2003) Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography. Anal. Chim. Acta. 494:140–156. https://doi.org/10.1016/j.aca.2003.08.006

    Article  CAS  Google Scholar 

  20. Ding SY, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42:548. https://doi.org/10.1039/C2CS35072F

    Article  CAS  Google Scholar 

  21. Zhang XL, Li GL, Wu D, Zhang B, Hu N, Wang HL, Liu JH, Wu YN (2019) Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Biosens. Bioslsctron. 145:111699–111718. https://doi.org/10.1016/j.bios.2019.111699

    Article  CAS  Google Scholar 

  22. Cao XC, Xu HQ, Dong SL, Xu JY, Qiao ZH, Zhao S, Wang JX, Wang Z (2020) Preparation of high-performance and pressure-resistant mixed matrix membranes for CO2/H2 separation by modifying COF surface with the groups or segments of the polymer matrix. J. Membr. Sci. 601:117882. https://doi.org/10.1016/j.memsci.2020.117882

    Article  CAS  Google Scholar 

  23. Si L, Wang J, Li G, Hong X, Wei Q, Yang Y, Zhang M, Cai Y (2019) High energy density lithium-selenium batteries enabled by a covalent organic framework-coated separator. Mater. Lett. 246:144–148. https://doi.org/10.1016/j.matlet.2019.03.057

    Article  CAS  Google Scholar 

  24. Zhang SH, Yang Q, Wang C, Luo XL, Kim JH, Wang Z, Yamauchi Y (2018b) Porous organic frameworks: advanced materials in analytical chemistry. Adv. Sci. 5:1801116–1801144. https://doi.org/10.1002/advs.201801116

    Article  CAS  Google Scholar 

  25. Li WK, Ren P, Zhou YW, Feng JT, Ma ZQ (2020) Europium (III) functionalized 3D covalent organic framework for quinones adsorption and sensing investigation. J. Hazard. Mater. 388:121740. https://doi.org/10.1016/j.jhazmat.2019.121740

    Article  CAS  Google Scholar 

  26. Yang XS, Zhao J, Wang LL, Liu YS, Liu QW, Peng XY, Wang P (2022) Core-shell-structured magnetic covalent organic frameworks for effective extraction of parabens prior to their determination by HPLC. Microchim Acta. 189:340. https://doi.org/10.1007/s00604-022-05444-w

    Article  CAS  Google Scholar 

  27. Ma WD, Zheng Q, He YT, Li GR, Guo WJ, Lin ZA, Cai ZW (2019) Size-controllable synthesis of uniform spherical covalent organic frameworks at room temperature for rapidly efficient and selective enrichment of hydrophobic peptides. J. Am. Chem. Soc. 141:18271–218277. https://doi.org/10.1021/jacs.9b09189

    Article  CAS  Google Scholar 

  28. Ma JC, Yu ZD, Liu ST, Chen YC, Lv YC, Liu YF, Liu CX, Ye XX, Shi YQ, Liu MH, Tian JY (2022) Efficient extraction of trace organochlorine pesticides from environment samples by a polyacrylonitrile electrospun nanofiber membrane modified with covalent organic framework. J. Hazard. Mater. 424:127–455. https://doi.org/10.1016/j.jhazmat.2021.127455

    Article  CAS  Google Scholar 

  29. Yang YX, Ma WD, Li GR, Zhong C, Yan X, Huang WN, Zhang SS, Cai ZW, Lin ZA (2021) Polyamide-supported covalent organic framework nanomembranes for molecular size-dependent selective separation. ACS Appl. Nano. Mater. 4:13967–13975. https://doi.org/10.1021/acsanm.1c03279

    Article  CAS  Google Scholar 

  30. Gole B, Stepanenko V, Rager S, Grüne M, Medina DD, Bein T, Würthner F, Beuerle F (2018) Microtubular self-assembly of covalent organic framework. Angew. Chem. Int. Ed. 57:846–850. https://doi.org/10.1002/ange.201708526

    Article  CAS  Google Scholar 

  31. Zhong C, Ma WD, He YT, Ouyang D, Li GR, Yang YX, Zheng Q, Huang H, Cai ZW, Lin ZA (2021) Controllable synthesis of hollow microtubular covalent organic frameworks as an enzyme-immobilized platform for enhancing catalytic activity. ACS Appl. Mater. Interfaces. 13:52417–52424. https://doi.org/10.1021/acsami.1c16386

    Article  CAS  Google Scholar 

  32. Sousa ET, Cardoso MP, Silva LA, De Andrade JB (2015) Direct determination of quinones in fine atmospheric particulate matter by GC-MS. Microchemical Journal. 118:26–31. https://doi.org/10.1016/j.microc.2014.07.013

    Article  CAS  Google Scholar 

  33. Santos LO, Dos Anjos JP, Ferreira SLC, De Andrade JB (2017) Simultaneous determination of PAHS, nitro-PAHS and quinones in surface and groundwater samples using SDME/GC-MS. Microchemical Journal. 133:431–440. https://doi.org/10.1016/j.microc.2017.04.012

    Article  CAS  Google Scholar 

  34. Pei JY, Wang YH, Yu KF (2018) Sensitive determination of quinones by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry with methanol derivatization. Analytical Sciences. 34:335–340. https://doi.org/10.2116/analsci.34.335

    Article  CAS  Google Scholar 

  35. Ling C, Shi Q, Wei ZP, Zhang JJ, Hu JJ, Pei JY (2022) Rapid analysis of quinones in complex matrices by derivatization-based wooden-tip electrospray ionization mass spectrometry. Talanta 237:122912. https://doi.org/10.1016/j.talanta.2021.122912

    Article  CAS  Google Scholar 

  36. Hsieh YJ, Lin LC, Tsai TH (2006) Measurement and pharmacokinetic study of plumbagin in a conscious freely moving rat using liquid chromatography/ tandem mass spectrometry. J. Chromatogr. B. 844:1–5. https://doi.org/10.1016/j.jchromb.2006.06.024

    Article  CAS  Google Scholar 

  37. Xu FG, Liu Y, Zhang ZJ, Song R, Dong HJ, Tian Y (2008) Rapid simultaneous quantification of five active constituents in rat plasma by high-performance liquid chromatography/tandem mass spectrometry after oral administration of Da-Cheng-Qi decoction. J. Pharmaceut. Biomed. Anal. 47:586–595. https://doi.org/10.1016/j.jpba.2008.02.005

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22036001, 91843301 and 21974021) and the Major Project of Science and Technology of Fujian Province (2020HZ06006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zian Lin or Zongwei Cai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Tong, W., Wu, Y. et al. Facile synthesis of hollow microtubular COF as enrichment probe for quantitative detection of ultratrace quinones in mice plasma with APGC-MS/MS. Microchim Acta 190, 72 (2023). https://doi.org/10.1007/s00604-023-05639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05639-9

Keywords

Navigation