Skip to main content
Log in

Ti3C2@Bi2O3 nanoaccordion for electrochemical determination of miRNA-21

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Based on a dual signal amplification strategy of novel accordion-like Bi2O3-decorated Ti3C2 (Ti3C2@Bi2O3) nanocomposites and hybridization chain reaction (HCR), an ultra-sensitive electrochemical biosensor was constructed for miRNA-21 detection. By etching Ti3AlC2 with HF, Ti3C2 with an accordion-like structure was first obtained and subsequently covered by Bi2O3 nanoparticles (NPs), forming Ti3C2@Bi2O3. A layer of Au NPs was electrodeposited on the glassy carbon electrode coated with Ti3C2@Bi2O3, which not only significantly improved the electron transport capacity of the electrode but also greatly increased its surface active area. Upon the immobilization of the thiolated capture probe (SH-CP) on the electrode, the target miRNA-21 specifically hybridized with SH-CP and thus opened its hairpin structure, triggering HCR to form a long double strand with the primers H1 and H2. A large number of the electrochemical indicator molecules were thus embedded inside the long double strands to produce the desirable electrochemical signal at a potential of − 0.19 V (vs. Ag/AgCl). Such dual signal amplification strategy successfully endowed the biosensor with ultra-high sensitivity for miRNA-21 detection in a wide linear range from 1 fM to 100 pM with a detection limit as low as 0.16 fM. The excellent detection of miRNA-21 in human blood plasma displayed a broad prospect in clinical diagnosis.

Graphical Abstract

An ultra-sensitive electrochemical biosensor was successfully constructed for miRNA-21 detection in human blood plasma based on the dual signal amplification strategy of novel accordion-like Bi2O3 decorated Ti3C2 (Ti3C2@Bi2O3) nanocomposites and hybridization chain reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang X, Wu Y, Zhang B, Ni B (2018) Noncoding RNAs in multiple sclerosis. Clin Epigenet 10. https://doi.org/10.1186/s13148-018-0586-9

  2. Li MX, Zhao W, Wang H, Li XL, Xu CH, Chen HY et al (2018) Dynamic single molecular rulers: toward quantitative detection of microRNA-21 in living cells. Anal Chem 90(24):14255–14259. https://doi.org/10.1021/acs.analchem.8b03322

    Article  CAS  Google Scholar 

  3. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531. https://doi.org/10.1038/nrg1379

    Article  CAS  Google Scholar 

  4. Nassar FJ, Nasr R, Talhouk R (2017) MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther 172:34–49. https://doi.org/10.1016/j.pharmthera.2016.11.012

    Article  CAS  Google Scholar 

  5. Shu XL, Fan CB, Long B, Zhou X, Wang Y (2016) The anti-cancer effects of cisplatin on hepatic cancer are associated with modulation of miRNA-21 and miRNA-122 expression. Eur Rev Med Pharmacol Sci 20(21):4459–4465

    Google Scholar 

  6. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553(7689):446–454. https://doi.org/10.1038/nature25183

    Article  CAS  Google Scholar 

  7. Li M, Wang Y, Liu X, Zhang Z, Wang L, Li Y (2020) miR-629 targets FOXO3 to promote cell apoptosis in gastric cancer. Exp Ther Med 19(1):294–300. https://doi.org/10.3892/etm.2019.8168

    Article  CAS  Google Scholar 

  8. Li J, Wu Z, Zheng D, Sun Y, Wang S, Yan Y (2019) Bioinformatics analysis of the regulatory lncRNA-miRNA-mRNA network and drug prediction in patients with hypertrophic cardiomyopathy. Mol Med Rep 20(1):549–558. https://doi.org/10.3892/mmr.2019.10289

    Article  CAS  Google Scholar 

  9. Elemeery MN, Badr AN, Mohamed MA, Ghareeb DA (2017) Validation of a serum microRNA panel as biomarkers for early diagnosis of hepatocellular carcinoma post-hepatitis C infection in Egyptian patients. World J Gastroenterol 23(21):3864–3875. https://doi.org/10.3748/wjg.v23.i21.3864

    Article  CAS  Google Scholar 

  10. Varallyay E, Burgyan J, Havelda Z (2007) Detection of microRNAs by Northern blot analyses using LNA probes. Methods 43(2):140–145. https://doi.org/10.1016/j.ymeth.2007.04.004

    Article  CAS  Google Scholar 

  11. Lee W-H, Tsai M-J, Chang W-A, Wu L-Y, Wang H-Y, Chang K-F et al (2018) Deduction of novel genes potentially involved in hypoxic AC16 human cardiomyocytes using next-generation sequencing and bioinformatics approaches. Int J Mol Med 42(5):2489–2502. https://doi.org/10.3892/ijmm.2018.3851

    Article  CAS  Google Scholar 

  12. Ahmed FE, Ahmed NC, Gouda MM, Vos PW, Bonnerup C (2018) RT-qPCR for fecal mature microRNA quantification and validation. Methods Mol Biol (Clifton, NJ) 1765:203–215. https://doi.org/10.1007/978-1-4939-7765-9_13

    Article  CAS  Google Scholar 

  13. Zhuang Y, Huang F, Xu Q, Zhang M, Lou X, Xia F (2016) Facile, fast-responsive, and photostable imaging of telomerase activity in living cells with a fluorescence turn-on manner. Anal Chem 88(6):3289–3294. https://doi.org/10.1021/acs.analchem.5b04756

    Article  CAS  Google Scholar 

  14. Xiao S, Wang X, Yang C, Jiang Y, Zhen S, Huang C et al (2022) Electrochemiluminescence resonance energy transfer system based on silver metal-organic frameworks as a double-amplified emitter for sensitive detection of miRNA-107. Anal Chem 94(2):1178–1186. https://doi.org/10.1021/acs.analchem.1c04368

    Article  CAS  Google Scholar 

  15. Tian R, Zheng XW (2016) Sensitive colorimetric detection of microrna based on target catalyzed double-arm hairpin DNA assembling. Anal Sci 32(7):751–755

    Article  CAS  Google Scholar 

  16. Liu X, Huang R, Su R, Qi W, Wang L, He Z (2014) Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors. ACS Appl Mater Interfaces 6(15):13034–13042. https://doi.org/10.1021/am502921z

    Article  CAS  Google Scholar 

  17. Cai W, Xie S, Tang Y, Chai Y, Yuan R, Zhang J (2017) A label-free electrochemical biosensor for microRNA detection based on catalytic hairpin assembly and in situ formation of molybdophosphate. Talanta 163:65–71. https://doi.org/10.1016/j.talanta.2016.10.086

    Article  CAS  Google Scholar 

  18. Negahdary M, Angnes L (2022) Application of electrochemical biosensors for the detection of microRNAs (miRNAs) related to cancer. Coordination Chem Rev 464. https://doi.org/10.1016/j.ccr.2022.214565

  19. Gao W, Dong H, Lei J, Ji H, Ju H (2011) Signal amplification of streptavidin–horseradish peroxidase functionalized carbon nanotubes for amperometric detection of attomolar DNA. Chem Commun 47(18). https://doi.org/10.1039/c1cc10840a

  20. Ju H (2017) Signal amplification for highly sensitive immunosensing. J Anal Test 1(1). https://doi.org/10.1007/s41664-017-0008-6

  21. Lei J, Ju H (2012) Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev 41(6):2122–2134. https://doi.org/10.1039/c1cs15274b

    Article  CAS  Google Scholar 

  22. Ju H (2012) Signal amplification for highly sensitive bioanalysis based on biosensors or biochips. J Biochips Tissue Chips 02(02). https://doi.org/10.4172/2153-0777.1000e114

  23. Zhou QY, Ma RN, Hu CL, Sun F, Jia LP, Zhang W et al (2021) A novel ratiometric electrochemical biosensing strategy based on T7 exonuclease-assisted homogenous target recycling coupling hairpin assembly-triggered double-signal output for the multiple amplified detection of miRNA. Analyst 146(8):2705–2711. https://doi.org/10.1039/d1an00204j

    Article  CAS  Google Scholar 

  24. Liu S, Yang Z, Chang Y, Chai Y, Yuan R (2018) An enzyme-free electrochemical biosensor combining target recycling with Fe3O4/CeO2@Au nanocatalysts for microRNA-21 detection. Biosens Bioelectron 119:170–175. https://doi.org/10.1016/j.bios.2018.08.006

    Article  CAS  Google Scholar 

  25. Wang X, Liu G, Qi Y, Yuan Y, Gao J, Luo X et al (2019) Embedded Au nanoparticles-based ratiometric electrochemical sensing strategy for sensitive and reliable detection of copper ions. Anal Chem 91(18):12006–12013. https://doi.org/10.1021/acs.analchem.9b02945

    Article  CAS  Google Scholar 

  26. Heiat M, Negahdary M (2019) Sensitive diagnosis of alpha-fetoprotein by a label free nanoaptasensor designed by modified Au electrode with spindle-shaped gold nanostructure. Microchem J 148:456–466. https://doi.org/10.1016/j.microc.2019.05.004

    Article  CAS  Google Scholar 

  27. Duan F, Guo C, Hu M, Song Y, Wang M, He L et al (2020) Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155. Sensors Actuators B Chem 310. https://doi.org/10.1016/j.snb.2020.127844

  28. Feng A, Yu Y, Mi L, Yu Y, Song L (2018) Comparative study on electrosorptive behavior of NH4HF2-etched Ti3C2 and HF-etched Ti3C2 for capacitive deionization. Ionics 25(2):727–735. https://doi.org/10.1007/s11581-018-2787-9

    Article  CAS  Google Scholar 

  29. Song H, Wang Y, Ling Z, Zu D, Li Z, Shen Y et al (2020) Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti(3)C(2) MXene-derived heterojunction photocatalyst: Application of intercalation strategy in DESs. Sci Total Environ 746:141009. https://doi.org/10.1016/j.scitotenv.2020.141009

    Article  CAS  Google Scholar 

  30. Đurđić S, Vukojević V, Vlahović F, Ognjanović M, Švorc Ľ, Kalcher K et al (2019) Application of bismuth (III) oxide decorated graphene nanoribbons for enzymatic glucose biosensing. J Electroanal Chem 850. https://doi.org/10.1016/j.jelechem.2019.113400

  31. Liang L, Yang R, Han G, Feng Y, Zhao B, Zhang R et al (2020) Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti(3)C(2)T(x) MXene. ACS Appl Mater Interfaces 12(2):2644–2654. https://doi.org/10.1021/acsami.9b18504

    Article  CAS  Google Scholar 

  32. Liu LZ, Song C, Zhang Z, Yang J, Zhou LL, Zhang X et al (2015) Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction. Biosens Bioelectron 70:351–357. https://doi.org/10.1016/j.bios.2015.03.051

    Article  CAS  Google Scholar 

  33. Ge Z, Lin M, Wang P, Pei H, Yan J, Shi J et al (2014) Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal Chem 86(4):2124–2130. https://doi.org/10.1021/ac4037262

    Article  CAS  Google Scholar 

  34. Lu J, Wu L, Hu Y, Wang S, Guo Z (2018) Ultrasensitive Faraday cage-type electrochemiluminescence assay for femtomolar miRNA-141 via graphene oxide and hybridization chain reaction-assisted cascade amplification. Biosens Bioelectron 109:13–19. https://doi.org/10.1016/j.bios.2018.02.062

    Article  CAS  Google Scholar 

  35. Oishi M (2015) Enzyme-free and isothermal detection of microRNA based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction signal amplification. Anal Bioanal Chem 407(14):4165–4172. https://doi.org/10.1007/s00216-015-8629-y

    Article  CAS  Google Scholar 

  36. Mahmoudian-Sani M-R, Asadi-Samani M (2020) Modulation of microRNAs by Euphorbia microsciadia Boiss in MDA-MB-231 cell line: new possibilities in breast cancer therapy. Recent Pat Anti-Cancer Drug Discovery 15(2):174–184. https://doi.org/10.2174/1574892815666200630102944

    Article  CAS  Google Scholar 

  37. Guo J, Yuan C, Yan Q, Duan Q, Li X, Yi G (2018) An electrochemical biosensor for microRNA-196a detection based on cyclic enzymatic signal amplification and template-free DNA extension reaction with the adsorption of methylene blue. Biosens Bioelectron 105:103–108. https://doi.org/10.1016/j.bios.2018.01.036

    Article  CAS  Google Scholar 

  38. Song Y, Wang MY, Qian Q, Xu J, Zhou QG, Lv SJ et al (2021) Trace miRNA assay based on DNA nanostructures formed by hybridization chain reaction and gold-nanoparticle tags. ChemElectroChem 8(15):2778–2782. https://doi.org/10.1002/celc.202100466

    Article  CAS  Google Scholar 

  39. Tian W, Li P, He W, Liu C, Li Z (2019) Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs. Biosens Bioelectron 128:17–22. https://doi.org/10.1016/j.bios.2018.12.041

    Article  CAS  Google Scholar 

  40. Dong J, Yang H, Zhao J, Wen L, He C, Hu Z et al (2022) Sandwich-type microRNA biosensor based on graphene oxide incorporated 3D-flower-like MoS(2) and AuNPs coupling with HRP enzyme signal amplification. Mikrochim Acta 189(1):49. https://doi.org/10.1007/s00604-021-05141-0

    Article  CAS  Google Scholar 

  41. Guo WJ, Wu Z, Yang XY, Pang DW, Zhang ZL (2019) Ultrasensitive electrochemical detection of microRNA-21 with wide linear dynamic range based on dual signal amplification. Biosens Bioelectron 131:267–273. https://doi.org/10.1016/j.bios.2019.02.026

    Article  CAS  Google Scholar 

  42. Bao J, Hou CJ, Zhao YA, Geng XT, Samalo M, Yang HS et al (2019) An enzyme-free sensitive electrochemical microRNA-16 biosensor by applying a multiple signal amplification strategy based on Au/PPy-rGO nanocomposite as a substrate. Talanta 196:329–336. https://doi.org/10.1016/j.talanta.2018.12.082

    Article  CAS  Google Scholar 

  43. Zhou LL, Wang T, Bai Y, Li Y, Qiu JH, Yu W et al (2020) Dual-amplified strategy for ultrasensitive electrochemical biosensor based on click chemistry-mediated enzyme-assisted target recycling and functionalized fullerene nanoparticles in the detection of microRNA-141. Biosensors Bioelectronics 150. https://doi.org/10.1016/j.bios.2019.111964

  44. Lu J, Wang J, Hu X, Gyimah E, Yakubu S, Wang K et al (2019) Electrochemical biosensor based on tetrahedral DNA nanostructures and G-quadruplex-hemin conformation for the ultrasensitive detection of microRNA-21 in serum. Anal Chem 91(11):7353–7359. https://doi.org/10.1021/acs.analchem.9b01133

    Article  CAS  Google Scholar 

  45. Liang Z, Ou D, Sun D, Tong Y, Luo H, Chen Z (2019) Ultrasensitive biosensor for microRNA-155 using synergistically catalytic nanoprobe coupled with improved cascade strand displacement reaction. Biosens Bioelectron 146:111744. https://doi.org/10.1016/j.bios.2019.111744

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Shanghai (19ZR1434800), Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Clinical research project of Shanghai Municipal Health Commission (201940078), and Scientific research program of Shanghai Science and Technology Commission (21140903200). The authors greatly appreciated this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruizhuo Ouyang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 130 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, R., Jiang, L., Xie, X. et al. Ti3C2@Bi2O3 nanoaccordion for electrochemical determination of miRNA-21. Microchim Acta 190, 52 (2023). https://doi.org/10.1007/s00604-022-05624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05624-8

Keywords

Navigation