Skip to main content
Log in

Evaluation of cellophane as platform for colorimetric assays on microfluidic analytical devices

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Due to their low cost, simplicity, and pump-free liquid transport properties, colorimetric assays on paper spots and microfluidic paper-based analytical devices (µPADs) are regarded as useful tools for point-of-care testing (POCT). However, for certain types of colorimetric assays, the “non-transparent” and “white” characters of paper can be a disadvantage. In this work, the possibilities of using cellophane as an alternative platform for colorimetric assays have been investigated. Cellophane is a low cost and easy-to-handle transparent film made of regenerated cellulose. Owing to its hydrophilic character, cellophane-based microfluidic channels fabricated through a print–cut–laminate approach enabled pump-free liquid transport into multiple detection areas, similar to µPADs. In addition, the water absorption characteristics of cellophane allowed the stable immobilization of water-soluble colorimetric indicators without any surface modification or additional reagents. The transparency of cellophane provides possibilities for simple background coloring of the substrates, increasing the dynamic signal range for hue-based colorimetric assays, as demonstrated for two model assays targeting H2O2 (46-fold increase) and creatinine (3.6-fold increase). Finally, a turbidity detection-based protein assay was realized on black background cellophane spots. The lowest limits of detection achieved with the cellophane-based devices were calculated as 7 µM for H2O2, 2.7 mg dL−1 for creatinine, and 3.5 mg dL−1 for protein (human serum albumin).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data generated during this study is included in this published article and its supplementary information file. Additional data is available from the corresponding author on reasonable request.

References

  1. Land KJ, Boeras DI, Chen X-S et al (2019) REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat Microbiol 4:46–54. https://doi.org/10.1038/s41564-018-0295-3

    Article  CAS  Google Scholar 

  2. Dincer C, Bruch R, Costa‐Rama E et al (2019) Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater 1806739. https://doi.org/10.1002/adma.201806739

  3. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10. https://doi.org/10.1021/ac9013989

    Article  CAS  Google Scholar 

  4. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320. https://doi.org/10.1002/anie.200603817

    Article  CAS  Google Scholar 

  5. Apilux A, Ukita Y, Chikae M et al (2013) Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13:126–135. https://doi.org/10.1039/C2LC40690J

    Article  CAS  Google Scholar 

  6. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934. https://doi.org/10.1021/ac800604v

    Article  CAS  Google Scholar 

  7. Yamada K, Henares TG, Suzuki K, Citterio D (2015) Paper-based inkjet-printed microfluidic analytical devices. Angew Chem Int Ed 54:5294–5310. https://doi.org/10.1002/anie.201411508

    Article  CAS  Google Scholar 

  8. Maejima K, Tomikawa S, Suzuki K, Citterio D (2013) Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv 3:9258. https://doi.org/10.1039/c3ra40828k

    Article  CAS  Google Scholar 

  9. Ghosh R, Gopalakrishnan S, Savitha R et al (2019) Fabrication of laser printed microfluidic paper-based analytical devices (LP-µPADs) for point-of-care applications. Sci Rep 9: https://doi.org/10.1038/s41598-019-44455-1

  10. Cantrell K, Erenas MM, de Orbe-Payá I, Capitán-Vallvey LF (2010) Use of the hue parameter of the hue, saturation, value color space as a quantitative analytical parameter for bitonal optical sensors. Anal Chem 82:531–542. https://doi.org/10.1021/ac901753c

    Article  CAS  Google Scholar 

  11. Erenas MM, Cantrell K, Ballesta-Claver J et al (2012) Use of digital reflection devices for measurement using hue-based optical sensors. Sens Actuators B Chem 174:10–17. https://doi.org/10.1016/j.snb.2012.07.100

    Article  CAS  Google Scholar 

  12. Nguyen HQ, Nguyen VD, Van Nguyen H, Seo TS (2020) Quantification of colorimetric isothermal amplification on the smartphone and its open-source app for point-of-care pathogen detection. Sci Rep 10:15123. https://doi.org/10.1038/s41598-020-72095-3

    Article  CAS  Google Scholar 

  13. Krauss ST, Nauman AQ, Garner GT, Landers JP (2017) Color manipulation through microchip tinting for colorimetric detection using hue image analysis. Lab Chip 17:4089–4096. https://doi.org/10.1039/C7LC00796E

    Article  CAS  Google Scholar 

  14. Ibaraki Y (2013) Reaction principle of turbidity generation of serum albumin by aromatic organic acid salt. Int J Anal Bio-Sci 1:10

    Google Scholar 

  15. Hamedi MM, Ünal B, Kerr E et al (2016) Coated and uncoated cellophane as materials for microplates and open-channel microfluidics devices. Lab Chip 16:3885–3897. https://doi.org/10.1039/C6LC00975A

    Article  CAS  Google Scholar 

  16. Shin J, Kasama T, Miyake R (2022) Development of cellulosic material-based microchannel device capable of fluorescence immunoassay of microsamples. Anal Bioanal Chem 414:3419–3428. https://doi.org/10.1007/s00216-022-03963-2

    Article  CAS  Google Scholar 

  17. Miyamoto H, Umemura M, Aoyagi T et al (2009) Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations. Carbohydr Res 344:1085–1094. https://doi.org/10.1016/j.carres.2009.03.014

    Article  CAS  Google Scholar 

  18. Wei W, Huang Q (2018) Preparation of cellophane-based substrate and its SERS performance on the detection of CV and acetamiprid. Spectrochim Acta A Mol Biomol Spectrosc 193:8–13. https://doi.org/10.1016/j.saa.2017.11.062

    Article  CAS  Google Scholar 

  19. Stamm AJ (1956) Diffusion of water into uncoated cellophane. I. From rates of water vapor adsorption, and liquid water absorption. J Phys Chem 60:76–82. https://doi.org/10.1021/j150535a019

    Article  CAS  Google Scholar 

  20. Pávai M, Szabó T, Paszternák A (2015) The potential use of cellophane test strips for the quick determination of food colours. Cellulose 22:1883–1891. https://doi.org/10.1007/s10570-015-0587-1

    Article  CAS  Google Scholar 

  21. Mária P, Mihály J, Paszternák A (2015) pH and CO2 sensing by curcumin-coloured cellophane test strip. Food Anal Methods 8:2243–2249

    Article  Google Scholar 

  22. Pávai M, Orosz E, Paszternák A (2016) Smartphone-based extension of the curcumin/cellophane pH sensing method. Food Anal Methods 9:1046–1052. https://doi.org/10.1007/s12161-015-0277-5

    Article  Google Scholar 

  23. Bouaidat S, Hansen O, Bruus H et al (2005) Surface-directed capillary system; theory, experiments and applications. Lab Chip 5:827. https://doi.org/10.1039/b502207j

    Article  CAS  Google Scholar 

  24. Songok J, Toivakka M (2016) Enhancing capillary-driven flow for paper-based microfluidic channels. ACS Appl Mater Interfaces 8:30523–30530. https://doi.org/10.1021/acsami.6b08117

    Article  CAS  Google Scholar 

  25. Songok J, Toivakka M (2017) Modelling of capillary-driven flow for closed paper-based microfluidic channels. J Micromechanics Microengineering 27:065001. https://doi.org/10.1088/1361-6439/aa6b40

    Article  CAS  Google Scholar 

  26. Waldmann-Meyer H, Schilling K (1956) Protein adsorption on filter paper. Science 124:1028–1029. https://doi.org/10.1126/science.124.3230.1028

    Article  CAS  Google Scholar 

  27. Gabriel EFM, Garcia PT, Cardoso TMG et al (2016) Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices. Analyst 141:4749–4756. https://doi.org/10.1039/C6AN00430J

    Article  CAS  Google Scholar 

  28. Henares TG, Yamada K, Takaki S et al (2017) “Drop-slip” bulk sample flow on fully inkjet-printed microfluidic paper-based analytical device. Sens Actuators B Chem 244:1129–1137. https://doi.org/10.1016/j.snb.2017.01.088

    Article  CAS  Google Scholar 

  29. Timofei S, Schmidt W, Kurunczi L, Simon Z (2000) A review of QSAR for dye a • nity for cellulose ®bres. Dyes Pigments 12

  30. Sakai K (1994) Determination of pore size and pore size distribution. J Membr Sci 96:91–130. https://doi.org/10.1016/0376-7388(94)00127-8

    Article  CAS  Google Scholar 

  31. Cañas A, Ariza MJ, Benavente J (2002) A comparison of electrochemical and electrokinetic parameters determined for cellophane membranes in contact with NaCl and NaNO3 solutions. J Colloid Interface Sci 246:150–156. https://doi.org/10.1006/jcis.2001.8004

    Article  CAS  Google Scholar 

  32. Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E (2017) Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - a review. Anal Chim Acta 970:1–22. https://doi.org/10.1016/j.aca.2017.03.037

    Article  CAS  Google Scholar 

  33. Côté A-M, Brown MA, Lam E et al (2008) Diagnostic accuracy of urinary spot protein:creatinine ratio for proteinuria in hypertensive pregnant women: systematic review. BMJ 336:1003–1006. https://doi.org/10.1136/bmj.39532.543947.BE

    Article  CAS  Google Scholar 

  34. Benedict SR, Behre JA (1936) Some applications of a new color reaction for creatinine. J Biol Chem 114:515–532

    Article  CAS  Google Scholar 

  35. Watanabe M, Funabiki K, Tsuge T et al (2005) Using protein/creatinine ratios in random urine. J Clin Lab Anal 19:160–166. https://doi.org/10.1002/jcla.20071

    Article  CAS  Google Scholar 

  36. Meyer NL, Mercer BM, Friedman SA, Sibai BM (1994) Urinary dipstick protein: a poor predictor of absent or severe proteinuria. Am J Obstet Gynecol 170:137–141. https://doi.org/10.1016/S0002-9378(13)70294-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Naoko Iwasawa of Keio University for helpful discussions. Prof. Hiroaki Imai and Dr. Yuki Tokura of Keio University are acknowledged for their support with the measurement of contact angles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Citterio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 8748 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shigemori, H., Maejima, K., Shibata, H. et al. Evaluation of cellophane as platform for colorimetric assays on microfluidic analytical devices. Microchim Acta 190, 48 (2023). https://doi.org/10.1007/s00604-022-05622-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05622-w

Keywords

Navigation