Skip to main content
Log in

ZIF-8 base-aptamer “gate-lock” probes enable the visualization of a cascade response between deoxynivalenol and cytochrome c inside living cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Zeolitic imidazolate framework (ZIF-8) base-aptamer “gate-lock” biomaterial probes have been synthesized for monitoring intracellular deoxynivalenol (DON) and cytochrome c (cyt c) levels. The aptamer and organic fluorescent dye were regarded as a recognition element and a sensing element, respectively. In the presence of DON, the aptamers of DON and cyt c were specifically bound with the DON and induced cyt c, leading to the dissociation of aptamers from the porous surface of the probes. The gate was subsequently opened to release methylene blue (MB) and Rhodamine 6G (Rh6G), and their fluorescence (emission of MB at 700 nm and Rh6G at 550 nm) significantly recovered within 6 h. Cell imaging successfully monitored the exposure of DON and the biological process of cyt c discharge triggered by the activation of the DON-induced apoptosis pathway. In addition, the response between DON and cyt c was observed during the apoptosis process, which is of high significance for the comprehensive and systematic development of mycotoxins cytotoxicity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mishra S, Srivastava S, Dewangan J, Divakar A, Rath SK (2020) Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Crit Rev Food Sci Nutr 60:1346–1374

    Article  CAS  Google Scholar 

  2. Gruber-Dorninger C, Jenkins T, Schatzmayr G (2019) Global mycotoxin occurrence in feed: a ten-year survey. Toxins 11:375

    Article  CAS  Google Scholar 

  3. Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R (2010) Deoxynivalenol and its toxicity. Interdiscip Toxicol 3:94–99

    Article  CAS  Google Scholar 

  4. He BS, Wang K (2021) A “signal off” aptasensor based on NiFe2O4 NTs and Au@Pt NRs for the detection of deoxynivalenol via voltammetry. Microchim Acta 188:23

    Article  CAS  Google Scholar 

  5. Bensassi F, Gallerne C, Sharaf El Dein O, Lemaire C, Hajlaoui MR, Bacha H (2012) Involvement of mitochondria-mediated apoptosis in deoxynivalenol cytotoxicity. Food Chem Toxicol 50:1680–1689

    Article  CAS  Google Scholar 

  6. Liao Y, Peng Z, Chen L, Nussler AK, Liu L, Yang W (2018) Deoxynivalenol, gut microbiota and immunotoxicity: a potential approach? Food Chem Toxicol 112:342–354

    Article  CAS  Google Scholar 

  7. Manickam P, Kaushik A, Karunakaran C, Bhansali S (2017) Recent advances in cytochrome c biosensing technologies. Biosens Bioelectron 87:654–668

    Article  CAS  Google Scholar 

  8. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  9. Chandola C, Kalme S, Casteleijn MG, Urtti A, Neerathilingam M (2016) Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci 41:535–561

    Article  CAS  Google Scholar 

  10. Zhang L, Wan S, Jiang Y, Wang Y, Fu T, Liu Q, Cao Z, Qiu L, Tan W (2017) Molecular elucidation of disease biomarkers at the interface of chemistry and biology. J Am Chem Soc 139:2532–2540

    Article  CAS  Google Scholar 

  11. Chen TT, Tian X, Liu CL, Ge J, Chu X, Li Y (2015) Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor. J Am Chem Soc 137:982–989

    Article  CAS  Google Scholar 

  12. He CX, Zhou Y, Lin XF, Duan N, Wang ZP, Wu SJ (2021) Deoxynivalenol-induced cell apoptosis monitoring using a cytochrome c-specific fluorescent probe based on a photoinduced electron transfer reaction. J Hazard Mater 415:125638

    Article  CAS  Google Scholar 

  13. Ding F, Zhan Y, Lu X, Sun Y (2018) Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 9:4370–4380

    Article  CAS  Google Scholar 

  14. Kolemen S, Akkaya EU (2018) Reaction-based BODIPY probes for selective bio-imaging. Coord Chem Rev 354:121–134

    Article  CAS  Google Scholar 

  15. Li SY, Liu LH, Cheng H, Li B, Qiu WX, Zhang XZ (2015) A dual-FRET-based fluorescence probe for the sequential detection of MMP-2 and caspase-3. Chem Commun 51:14520–14523

    Article  CAS  Google Scholar 

  16. Pandey S, Bodas D (2020) High-quality quantum dots for multiplexed bioimaging: a critical review. Adv Colloid Interface Sci 278:102137

    Article  CAS  Google Scholar 

  17. Gao P, Lou R, Liu X, Cui B, Pan W, Li N, Tang B (2021) Rational design of a dual-layered metal-organic framework nanostructure for enhancing the cell imaging of molecular beacons. Anal Chem 93:5437–5441

    Article  CAS  Google Scholar 

  18. Chen BN, Jiang TT, Fu HY, Qu XL, Xu ZY, Zheng SR (2021) Ultrasensitive, rapid and selective sensing of hazardous fluoride ion in aqueous solution using a zirconium porphyrinic luminescent metal-organic framework. Anal Chim Acta 1145:95–102

    Article  CAS  Google Scholar 

  19. Du T, Huang L, Wang J, Sun J, Zhang W, Wang J (2021) Luminescent metal-organic frameworks (LMOFs): an emerging sensing platform for food quality and safety control. Trends Food Sci Technol 111:716–730

    Article  CAS  Google Scholar 

  20. Chen WH, Yu X, Cecconello A, Sohn YS, Nechushtai R, Willner I (2017) Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chem Sci 8:5769–5780

    Article  CAS  Google Scholar 

  21. Lashkari E, Wang H, Liu LS, Li J, Yam K (2017) Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate. Food Chem 221:926–935

    Article  CAS  Google Scholar 

  22. Dai G, Li Z, Luo F, Lu Y, Chu Z, Zhang J, Zhang F, Wang Q, He P (2021) Simultaneous electrochemical determination of nuc and mecA genes for identification of methicillin-resistant Staphylococcus aureus using N-doped porous carbon and DNA-modified MOF. Microchim Acta 188:39

    Article  CAS  Google Scholar 

  23. Zhao L, Yang J, Gong M, Zhang Y, Gu J (2020) Single wavelength excited multi-channel nanoMOF sensor for simultaneous and ratiometric imaging of intracellular pH and O2. J Mater Chem C 8:3904–3913

    Article  CAS  Google Scholar 

  24. Chinnapen DJF, Sen D (2002) Hemin-stimulated docking of cytochrome c to a hemin-DNA aptamer complex. Biochemistry 241:5202–5212

    Article  Google Scholar 

  25. Wu SQ, Liu HX, Liu YW. (2011) Deoxynivalenol nucleic acid aptamer and application thereof. https://patents.google.com/patent/CN102559686A/en

  26. Lin XF, Li CX, Meng XY, Yu WY, Duan N, Wang ZP, Wu SJ (2022) CRISPR-Cas12a-mediated luminescence resonance energy transfer aptasensing platform for deoxynivalenol using gold nanoparticle-decorated Ti3C2Tx MXene as the enhanced quencher. J Hazard Mater 433:128750

    Article  CAS  Google Scholar 

  27. Ren Q, Mou JS, Guo YM, Wang HQ, Cao XY, Zhang FF, Xia JF, Wang ZH (2020) Simple homogeneous electrochemical target-responsive aptasensor based on aptamer bio-gated and porous carbon nanocontainer derived from ZIF-8. Biosens Bioelectron 166:112448

    Article  CAS  Google Scholar 

  28. Zhang JJ, Hu XY, Yan XL, Feng R, Zhou M, Xue JL (2019) Enhanced adsorption of Rhodamine B by magnetic nitrogen-doped porous carbon prepared from bimetallic ZIFs. Colloid Surface A 575:10–17

    Article  CAS  Google Scholar 

  29. Wu LL, Wang Z, Zhao SN, Meng X, Song XZ, Feng J, Song SY, Zhang HJ (2016) A metal-organic framework/dna hybrid system as a novel fluorescent biosensor for mercury(ii) ion detection. Chem Eur J 22:477–480

    Article  CAS  Google Scholar 

  30. Zhu X, Zheng H, Wei X, Lin Z, Guo L, Qiu B, Chen G (2013) Metal–organic framework (MOF): a novel sensing platform for biomolecules. Chem Commun 49:1276

    Article  CAS  Google Scholar 

  31. Jia Y, Zhou G, Wang X, Zhang Y, Li Z, Liu P, Yu B, Zhang J (2020) A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta 219:121342

    Article  CAS  Google Scholar 

  32. Jain V, Bhagat S, Singh S (2021) Bovine serum albumin decorated gold nanoclusters: a fluorescence-based nanoprobe for detection of intracellular hydrogen peroxide. Sens Actuators B Chem 327:128886

    Article  CAS  Google Scholar 

  33. Li SX, Wang KK, Shi YJ, Cui YN, Chen BL, He B, Dai WB, Zhang H, Wang XQ, Zhong CL, Wu HN, Yang QY, Zhang Q (2016) Novel biological functions of ZIF-NP as a delivery vehicle: high pulmonary accumulation, favorable biocompatibility, and improved therapeutic outcome. Adv Funct Mater 26:2715–2727

    Article  CAS  Google Scholar 

  34. Olaniyan B, Saha B (2020) Comparison of catalytic activity of ZIF-8 and zr/ZIF-8 for greener synthesis of chloromethyl ethylene carbonate by CO2 utilization. Energies 13:521

    Article  CAS  Google Scholar 

  35. Cai C, Zou Y, Xiang C, Chu H, Qiu S, Sui Q, Xu F, Sun L, Shah A (2018) Broccoli-like porous carbon nitride from ZIF-8 and melamine for high performance supercapacitors. Appl Surf Sci 440:47–54

    Article  CAS  Google Scholar 

  36. Paul A, Vyas G, Paul P, Srivastava DN (2018) Gold-nanoparticle-encapsulated zif-8 for a mediator-free enzymatic glucose sensor by amperometry. ACS Appl Nano Mater 1:3600–3607

    Article  CAS  Google Scholar 

  37. He M, Yao J, Liu Q, Wang K, Chen F, Wang H (2014) Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater 184:55–60

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the National Key Research and Development Program of China (2022YFF1103000), National Natural Science Foundation of China (32072310), Laboratory of Lingnan Modern Agriculture Project (NZ2021037), Jiangsu Agriculture Science and Technology Innovation Fund (CX (22)3006), Postdoctoral Science Foundation of Jiangsu Province (1701097B), Guangzhou Science and Technology Project (202206010096), and Collaborative innovation center of food safety and quality control in Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenbo Yuan or Shijia Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1434 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, N., He, C., Lin, X. et al. ZIF-8 base-aptamer “gate-lock” probes enable the visualization of a cascade response between deoxynivalenol and cytochrome c inside living cells. Microchim Acta 190, 39 (2023). https://doi.org/10.1007/s00604-022-05619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05619-5

Keywords

Navigation