Skip to main content
Log in

Ultrasensitive detection of multiple cancer biomarkers by a triple cascade amplification strategy in combination with single particle inductively coupled plasma mass spectrometry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A versatile triple cascade amplification strategy was developed for ultrasensitive simultaneous detection of multiple cancer biomarkers using single particle inductively coupled plasma mass spectrometry (spICP-MS). The triple cascade amplification strategy consisted of an enhanced RecJf exonuclease-assisted target recycling amplification module, a hybridization chain reaction amplification module, and a signal amplification module based on DNA-templated multiple metal nanoclusters. In the enhanced RecJf exonuclease-assisted target recycling amplification module, the DNA bases at the 5′ ends of aptamers for specific recognition of biomarkers were deliberately replaced by the corresponding RNA bases to enhance amplification efficiency. The signal amplification module based on DNA-templated multiple metal nanoclusters was innovatively used to amplify the signals measured by spICP-MS and at the same time effectively suppress possible background interferences. The proposed spICP-MS platform achieved satisfactory quantitative results for both carcinoembryonic antigen (CEA) and a-fetoprotein (AFP) in human serum samples with accuracy comparable to that of the commercial ELISA kits. Moreover, it has wide dynamic ranges for both CEA (0.01–100 ng/mL) and AFP (0.01–200 ng/mL). The limit of detection for CEA and AFP was 0.6 and 0.5 pg/mL, respectively. Compared with conventional biomarkers detection methods, the proposed spICP-MS platform has the advantages of operational simplicity, ultra-high sensitivity, wide dynamic range, and low background. Therefore, it is reasonable to expect that the proposed spICP-MS platform can be further developed to be a promising alternative tool for biomarker detection in fields of clinical diagnosis and biomedical research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Borrebaeck CAK, Wingren C (2009) Design of high-density antibody microarrays for disease proteomics: key technological issues. J Proteomics 72(6):928–935. https://doi.org/10.1016/j.jprot.2009.01.027

    Article  CAS  Google Scholar 

  2. Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner D-M, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U (2017) Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 39(29):2704–2716. https://doi.org/10.1093/eurheartj/ehx165

    Article  CAS  Google Scholar 

  3. Gao Y, Huo W, Zhang L, Lian J, Tao W, Song C, Tang J, Shi S, Gao Y (2019) Multiplex measurement of twelve tumor markers using a GMR multi-biomarker immunoassay biosensor. Biosens Bioelectron 123:204–210. https://doi.org/10.1016/j.bios.2018.08.060

    Article  CAS  Google Scholar 

  4. Pereira LHM, Adebisi IN, Perez A, Wiebel M, Reis I, Duncan R, Goodwin WJ, Hu JJ, Lokeshwar VB, Franzmann EJ (2012) Salivary markers and risk factor data: a multivariate modeling approach for head and neck squamous cell carcinoma detection. Cancer Biomark 10:241–249. https://doi.org/10.3233/CBM-2012-0252

    Article  Google Scholar 

  5. Ye S, Chen X, Yao Y, Li Y, Sun R, Zeng H, Shu Y, Yin H (2019) Thioredoxin reductase as a novel and efficient plasma biomarker for the detection of non-small cell lung cancer: a large-scale, multicenter study. Sci Rep 9(1):2652. https://doi.org/10.1038/s41598-018-38153-7

    Article  CAS  Google Scholar 

  6. Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51(12):2415–2418. https://doi.org/10.1373/clinchem.2005.051532

    Article  CAS  Google Scholar 

  7. He M, Herr AE (2010) Polyacrylamide gel photopatterning enables automated protein immunoblotting in a two-dimensional microdevice. J Am Chem Soc 132(8):2512–2513. https://doi.org/10.1021/ja910164d

    Article  CAS  Google Scholar 

  8. Mishra M, Tiwari S, Gomes AV (2017) Protein purification and analysis: next generation Western blotting techniques. Expert Rev Proteomics 14(11):1037–1053. https://doi.org/10.1080/14789450.2017.1388167

    Article  CAS  Google Scholar 

  9. Zheng Z, Geng W-C, Gao J, Wang Y-Y, Sun H, Guo D-S (2018) Ultrasensitive and specific fluorescence detection of a cancer biomarker via nanomolar binding to a guanidinium-modified calixarene. Chem Sci 9(8):2087–2091. https://doi.org/10.1039/C7SC04989G

    Article  CAS  Google Scholar 

  10. Gallo V, Lai A, Pasquo A, Almaviva S, Iacobelli S, Persichetti L, Capellini G, Antonini G (2020) Surface-enhanced Raman scattering (SERS)–based immunosystem for ultrasensitive detection of the 90 K biomarker. Anal Bioanal Chem 412(27):7659–7667. https://doi.org/10.1007/s00216-020-02903-2

    Article  CAS  Google Scholar 

  11. Krishnan S, Mani V, Wasalathanthri D, Kumar CV, Rusling JF (2011) Attomolar detection of a cancer biomarker protein in serum by surface plasmon resonance using superparamagnetic particle labels. Angew Chem Int Ed 50(5):1175–1178. https://doi.org/10.1002/anie.201005607

    Article  CAS  Google Scholar 

  12. Cui W, He M, Mu L, Lin Z, Wang Y, Pang W, Reed M, Duan X (2018) Cellphone-enabled microwell-based microbead aggregation assay for portable biomarker detection. ACS sensors 3(2):432–440. https://doi.org/10.1021/acssensors.7b00866

    Article  CAS  Google Scholar 

  13. Wang J, Wu L, Ren J, Qu X (2012) Visualizing human telomerase activity with primer-modified Au nanoparticles. Small 8(2):259–264. https://doi.org/10.1002/smll.201101938

    Article  CAS  Google Scholar 

  14. Sawhney MA, Conlan RS (2019) POISED-5, a portable on-board electrochemical impedance spectroscopy biomarker analysis device. Biomed Microdevice 21(3):70. https://doi.org/10.1007/s10544-019-0406-9

    Article  Google Scholar 

  15. Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF (2012) Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry. Environ Toxicol Chem 31(1):115–121. https://doi.org/10.1002/etc.719

    Article  CAS  Google Scholar 

  16. Montoro Bustos AR, Petersen EJ, Possolo A, Winchester MR (2015) Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle reference materials. Anal Chem 87(17):8809–8817. https://doi.org/10.1021/acs.analchem.5b01741

    Article  CAS  Google Scholar 

  17. Peters R, Herrera-Rivera Z, Undas A, van der Lee M, Marvin H, Bouwmeester H, Weigel S (2015) Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J Anal At Spectrom 30(6):1274–1285. https://doi.org/10.1039/C4JA00357H

    Article  CAS  Google Scholar 

  18. Han G, Xing Z, Dong Y, Zhang S, Zhang X (2011) One-step homogeneous DNA assay with single-nanoparticle detection. Angew Chem Int Ed 50(15):3462–3465. https://doi.org/10.1002/anie.201006838

    Article  CAS  Google Scholar 

  19. Hu J, Deng D, Liu R, Lv Y (2018) Single nanoparticle analysis by ICPMS: a potential tool for bioassay. J Anal At Spectrom 33(1):57–67. https://doi.org/10.1039/C7JA00235A

    Article  CAS  Google Scholar 

  20. Li B-R, Tang H, Yu R-Q, Jiang J-H (2020) Single-nanoparticle ICPMS DNA assay based on hybridization-chain-reaction-mediated spherical nucleic acid assembly. Anal Chem 92(3):2379–2382. https://doi.org/10.1021/acs.analchem.9b05741

    Article  CAS  Google Scholar 

  21. Liu X, Zhang S-Q, Cheng Z-H, Wei X, Yang T, Yu Y-L, Chen M-L, Wang J-H (2018) Highly sensitive detection of microRNA-21 with ICPMS via hybridization accumulation of upconversion nanoparticles. Anal Chem 90(20):12116–12122. https://doi.org/10.1021/acs.analchem.8b03038

    Article  CAS  Google Scholar 

  22. Wu N, Wang K, Wang Y-T, Chen M-L, Chen X-W, Yang T, Wang J-H (2020) Three-dimensional DNA nanomachine biosensor by integrating DNA walker and rolling machine cascade amplification for ultrasensitive detection of cancer-related gene. Anal Chem 92(16):11111–11118. https://doi.org/10.1021/acs.analchem.0c01074

    Article  CAS  Google Scholar 

  23. Xing Y, Han J, Wu X, Pierce DT, Zhao JX (2020) Graphene/gold nanoparticle composites for ultrasensitive and versatile biomarker assay using single-particle inductively-coupled plasma/mass spectrometry. Analyst 145(24):7932–7940. https://doi.org/10.1039/D0AN01019G

    Article  CAS  Google Scholar 

  24. Xu X, Chen J, Li B, Tang L, Jiang J (2019) Single particle ICP-MS-based absolute and relative quantification of E. coli O157 16S rRNA using sandwich hybridization capture. The Analyst 144(5):1725–1730. https://doi.org/10.1039/C8AN02063A

    Article  CAS  Google Scholar 

  25. Zhang S, Han G, Xing Z, Zhang S, Zhang X (2014) Multiplex DNA assay based on nanoparticle probes by single particle inductively coupled plasma mass spectrometry. Anal Chem 86(7):3541–3547. https://doi.org/10.1021/ac404245z

    Article  CAS  Google Scholar 

  26. Du X, Jin R (2019) Atomically precise metal nanoclusters for catalysis. ACS Nano 13(7):7383–7387. https://doi.org/10.1021/acsnano.9b04533

    Article  CAS  Google Scholar 

  27. Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116(18):10346–10413. https://doi.org/10.1021/acs.chemrev.5b00703

    Article  CAS  Google Scholar 

  28. Chen C, Zhao J, Lu Y, Sun J, Yang X (2018) Fluorescence immunoassay based on the phosphate-triggered fluorescence turn-on detection of alkaline phosphatase. Anal Chem 90(5):3505–3511. https://doi.org/10.1021/acs.analchem.7b05325

    Article  CAS  Google Scholar 

  29. Chen Y, Liu H, Jiang J, Gu C, Zhao Z, Jiang T (2020) Immunoassay of tumor markers based on graphene surface-enhanced Raman spectroscopy. ACS Appl Bio Mater 3(11):8012–8022. https://doi.org/10.1021/acsabm.0c01098

    Article  CAS  Google Scholar 

  30. Huang Z, Li Z, Jiang M, Liu R, Lv Y (2020) Homogeneous multiplex immunoassay for one-step pancreatic cancer biomarker evaluation. Anal Chem 92(24):16105–16112. https://doi.org/10.1021/acs.analchem.0c03780

    Article  CAS  Google Scholar 

  31. Jie G, Li C, Zhao Y, Kuang Q, Niu S (2019) Fluorescent Mn:ZnCdS@ZnS and CdTe quantum dots probes on SiO2 microspheres for versatile detection of carcinoembryonic antigen and monitoring T4 polynucleotide kinase activity. ACS Applied Nano Materials 2(7):4637–4645. https://doi.org/10.1021/acsanm.9b01003

    Article  CAS  Google Scholar 

  32. Li C, Ma X, Guan Y, Tang J, Zhang B (2019) Microcantilever array biosensor for simultaneous detection of carcinoembryonic antigens and α-fetoprotein based on real-time monitoring of the profile of cantilever. ACS sensors 4(11):3034–3041. https://doi.org/10.1021/acssensors.9b01604

    Article  CAS  Google Scholar 

  33. Liu Y, Du M, Zhu J, Hu X, Ji X, He Z (2018) Three-dimensional immunosensing platform based on a hybrid nanoflower for sensitive detection of α-fetoprotein and enterovirus 71. ACS Applied Nano Materials 1(9):4964–4971. https://doi.org/10.1021/acsanm.8b01109

    Article  CAS  Google Scholar 

  34. Qiu Z, Shu J, Tang D (2018) Near-infrared-to-ultraviolet light-mediated photoelectrochemical aptasensing platform for cancer biomarker based on core–shell NaYF4:Yb, Tm@TiO2 upconversion microrods. Anal Chem 90(1):1021–1028. https://doi.org/10.1021/acs.analchem.7b04479

    Article  CAS  Google Scholar 

  35. Song Y, Zhang W, He S, Shang L, Ma R, Jia L, Wang H (2019) Perylene diimide and luminol as potential-resolved electrochemiluminescence nanoprobes for dual targets immunoassay at low potential. ACS Appl Mater Interfaces 11(37):33676–33683. https://doi.org/10.1021/acsami.9b11416

    Article  CAS  Google Scholar 

  36. Xiao L, Zhu A, Xu Q, Chen Y, Xu J, Weng J (2017) Colorimetric biosensor for detection of cancer biomarker by au nanoparticle-decorated Bi2Se3 nanosheets. ACS Appl Mater Interfaces 9(8):6931–6940. https://doi.org/10.1021/acsami.6b15750

    Article  CAS  Google Scholar 

  37. Zhang C, Gao Y, Yang N, You T, Chen H, Yin P (2018) Direct determination of the tumor marker AFP via silver nanoparticle enhanced SERS and AFP-modified gold nanoparticles as capturing substrate. Microchim Acta 185(2):90. https://doi.org/10.1007/s00604-017-2652-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (no. 22273020), the Leading Plan of Science and Technology Innovation in Hunan High-Tech Industry (2020SK2029), and the Research Foundation of Education Bureau of Hunan Province (no. 21C0474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Ping Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2822 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, YL., Wang, JK., Chen, ZP. et al. Ultrasensitive detection of multiple cancer biomarkers by a triple cascade amplification strategy in combination with single particle inductively coupled plasma mass spectrometry. Microchim Acta 190, 20 (2023). https://doi.org/10.1007/s00604-022-05604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05604-y

Keywords

Navigation