Skip to main content
Log in

Differential sensitization toward lanthanide metal–organic framework for detection of an anthrax biomarker

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel Tb-doped Eu-based metal–organic framework (Eu-MOF@Tb) has been developed by incorporating hexanuclear europium cluster and 2,2′-bipyridine-5,5′-dicarboxylic acid as well as coordination with Tb(III). Owing to the diverse coordination status of Tb(III) and Eu(III) in MOF, antenna effect emission from Tb(III) can be invoked by dipicolinic acid (DPA), but the luminescence originating from Eu(III) remains unchanged. Taking advantage of this phenomenon, a ratiometric luminescent method for detection of DPA, a biomarker for Bacillus subtilis spores, was developed through differential sensitization toward lanthanide ions. This analysis method allowed for the detection of DPA in the 0.2–10 μM concentration range, with a detection limit of 60 nM. It was further validated by spiked recoveries (89.3–110%) of real-world samples with RSD values in the range 3.9–11%. Alongside this, a paper indicator test was prepared for naked-eye detection of DPA via a dose-sensitive color evolution from red to green under UV light. The effectiveness of the proposed approach was explored in the detection of bacterial spores in real biological and environmental samples and indicated great potential for applications as a real-time monitoring system against the anthrax threat.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saraci F, Quezada-Novoa V, Donnarumma PR et al (2020) Rare-earth metal-organic frameworks: from structure to applications. Chem Soc Rev 49:7949–7977. https://doi.org/10.1039/d0cs00292e

    Article  CAS  Google Scholar 

  2. Hasegawa Y, Kitagawa Y (2022) Luminescent lanthanide coordination polymers with transformative energy transfer processes for physical and chemical sensing applications. J Photochem Photobiol C 51:100485. https://doi.org/10.1016/j.jphotochemrev.2022.100485

    Article  CAS  Google Scholar 

  3. Zhang Z, Jayakumar MKG, Zheng X et al (2019) Upconversion superballs for programmable photoactivation of therapeutics. Nat Commun 10:4586. https://doi.org/10.1038/s41467-019-12506-w

    Article  CAS  Google Scholar 

  4. Kaczmarek MT, Zabiszak M, Nowak M et al (2018) Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord Chem Rev 370:42–54. https://doi.org/10.1016/j.ccr.2018.05.012

    Article  CAS  Google Scholar 

  5. Zheng K, Han S, Zeng X et al (2018) Rewritable optical memory through high-registry orthogonal upconversion. Adv Mater 30:e1801726. https://doi.org/10.1002/adma.201801726

    Article  CAS  Google Scholar 

  6. Sutar P, Suresh VM, Maji TK (2015) Tunable emission in lanthanide coordination polymer gels based on a rationally designed blue emissive gelator. Chem Commun 51:9876–9879. https://doi.org/10.1039/c5cc02709h

    Article  CAS  Google Scholar 

  7. Su Q, Feng W, Yang D et al (2017) Resonance energy transfer in upconversion nanoplatforms for selective biodetection. Acc Chem Res 50:32–40. https://doi.org/10.1021/acs.accounts.6b00382

    Article  CAS  Google Scholar 

  8. Zhang X, Wang W, Hu Z et al (2015) Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord Chem Rev 284:206–235. https://doi.org/10.1016/j.ccr.2014.10.006

    Article  CAS  Google Scholar 

  9. Davis D, Carrod AJ, Guo Z et al (2019) Imidodiphosphonate ligands for enhanced sensitization and shielding of visible and near-infrared lanthanides. Inorg Chem 58:13268–13275. https://doi.org/10.1021/acs.inorgchem.9b02090

    Article  CAS  Google Scholar 

  10. Freslon S, Luo Y, Daiguebonne C et al (2016) Brightness and color tuning in a series of lanthanide-based coordination polymers with benzene-1,2,4,5-tetracarboxylic acid as a ligand. Inorg Chem 55:794–802. https://doi.org/10.1021/acs.inorgchem.5b02242

    Article  CAS  Google Scholar 

  11. Yan B (2017) Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc Chem Res 50:2789–2798. https://doi.org/10.1021/acs.accounts.7b00387

    Article  CAS  Google Scholar 

  12. Li X, Lu S, Tu D et al (2020) Luminescent lanthanide metal-organic framework nanoprobes: from fundamentals to bioapplications. Nanoscale 12:15021–15035. https://doi.org/10.1039/d0nr03373a

    Article  CAS  Google Scholar 

  13. Ou Y, Zhou W, Zhu Z et al (2020) Host differential sensitization toward color/lifetime-tuned lanthanide coordination polymers for optical multiplexing. Angew Chem Int Ed 59:23810–23816. https://doi.org/10.1002/anie.202011559

    Article  CAS  Google Scholar 

  14. Li X, Luo J, Deng L et al (2020) In situ incorporation of fluorophores in zeolitic imidazolate framework-8 (ZIF-8) for ratio-dependent detecting a biomarker of anthrax spores. Anal Chem 92:7114–7122. https://doi.org/10.1021/acs.analchem.0c00499

    Article  CAS  Google Scholar 

  15. Goodacre R, Shann B, Gilbert RJ et al (2000) Detection of the dipicolinic acid biomarker in Bacillus spores using curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem 72:119–127. https://doi.org/10.1021/ac990661i

    Article  CAS  Google Scholar 

  16. Farrow B, Hong SA, Romero EC et al (2013) A chemically synthesized capture agent enables the selective, sensitive, and robust electrochemical detection of anthrax protective antigen. ACS Nano 7:9452–9460. https://doi.org/10.1021/nn404296k

    Article  CAS  Google Scholar 

  17. Zhang X, Young MA, Lyandres O et al (2005) Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489. https://doi.org/10.1021/ja043623b

    Article  CAS  Google Scholar 

  18. Larkin IN, Garimella V, Yamankurt G et al (2020) Dual-readout sandwich immunoassay for device-free and highly sensitive anthrax biomarker detection. Anal Chem 92:7845–7851. https://doi.org/10.1021/acs.analchem.0c01090

    Article  CAS  Google Scholar 

  19. Hurtle W, Bode E, Kulesh DA et al (2004) Detection of the Bacillus anthracis gyra gene by using a minor groove binder probe. J Clin Microbiol 42:179–185. https://doi.org/10.1128/JCM.42.1.179-185.2004

    Article  CAS  Google Scholar 

  20. Tong YJ, Yu LD, Zheng J et al (2020) Graphene oxide-supported lanthanide metal-organic frameworks with boosted stabilities and detection sensitivities. Anal Chem 92:15550–15557. https://doi.org/10.1021/acs.analchem.0c03562

    Article  CAS  Google Scholar 

  21. Guo L, Liang M, Wang X et al (2020) The role of L-histidine as molecular tongs: a strategy of grasping Tb3+ using ZIF-8 to design sensors for monitoring an anthrax biomarker on-the-spot. Chem Sci 11:2407–2413. https://doi.org/10.1039/d0sc00030b

    Article  CAS  Google Scholar 

  22. Zhang X, Zhang W, Li G et al (2020) A ratiometric fluorescent probe for determination of the anthrax biomarker 2,6-pyridinedicarboxylic acid based on a terbium(III)-functionalized UIO-67 metal-organic framework. Mikrochim Acta 187:122. https://doi.org/10.1007/s00604-020-4113-2

    Article  CAS  Google Scholar 

  23. Jia L, Chen X, Xu J et al (2021) A smartphone-integrated multicolor fluorescence probe of bacterial spore biomarker: the combination of natural clay material and metal-organic frameworks. J Hazard Mater 402:123776. https://doi.org/10.1016/j.jhazmat.2020.123776

    Article  CAS  Google Scholar 

  24. Huang C, Ma R, Luo Y et al (2020) Stimulus response of TPE-TS@Eu/GMP ICPs: toward colorimetric sensing of an anthrax biomarker with double ratiometric fluorescence and its coffee ring test kit for point-of-use application. Anal Chem 92:12934–12942. https://doi.org/10.1021/acs.analchem.0c01570

    Article  CAS  Google Scholar 

  25. Gao N, Zhang Y, Huang P et al (2018) Perturbing tandem energy transfer in luminescent heterobinuclear lanthanide coordination polymer nanoparticles enables real-time monitoring of release of the anthrax biomarker from bacterial spores. Anal Chem 90:7004–7011. https://doi.org/10.1021/acs.analchem.8b01365

    Article  CAS  Google Scholar 

  26. Lei H, Qi C-X, Chen X-B et al (2019) Ratiometric fluorescence determination of the anthrax biomarker 2,6-dipicolinic acid using a Eu3+/Tb3+-doped nickel coordination polymer. New J Chem 43:18259–18267. https://doi.org/10.1039/c9nj04501e

    Article  CAS  Google Scholar 

  27. Xue DX, Cairns AJ, Belmabkhout Y et al (2013) Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. J Am Chem Soc 135:7660–7667. https://doi.org/10.1021/ja401429x

    Article  CAS  Google Scholar 

  28. Ning E, Yang L, Tu B et al (2019) Interface construction in microporous metal-organic frameworks from luminescent terbium-based building blocks. J Colloid Interface Sci 552:372–377. https://doi.org/10.1016/j.jcis.2019.05.056

    Article  CAS  Google Scholar 

  29. Holder CF, Schaak RE (2019) Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13:7359–7365. https://doi.org/10.1021/acsnano.9b05157

    Article  CAS  Google Scholar 

  30. Steemers FJ, Verboom W, Reinhoudt DN et al (1995) New sensitizer-modified calix[4]arenes enabling near-UV excitation of complexed luminescent lanthanide ions. J Am Chem Soc 117:9408–9414. https://doi.org/10.1021/ja00142a004

    Article  CAS  Google Scholar 

  31. Latva M, Takalo H, Mukkala V-M et al (1997) Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J Lumin 75:149–169. https://doi.org/10.1016/s0022-2313(97)00113-0

    Article  CAS  Google Scholar 

  32. Chang NC, Gruber JB (1964) Spectra and energy levels of Eu3+ in Y2O3. J Chem Phys 41:3227–3234. https://doi.org/10.1063/1.1725701

    Article  CAS  Google Scholar 

  33. Räsänen M, Takalo H, Rosenberg J et al (2020) Energy transfer in ternary TbEDTA chelates with a series of dipicolinic acid derivatives. J Lumin 220:116967–116975. https://doi.org/10.1016/j.jlumin.2019.116967

    Article  CAS  Google Scholar 

  34. Li P, Ang AN, Feng H et al (2017) Rapid detection of an anthrax biomarker based on the recovered fluorescence of carbon dot–Cu(II) systems. J Mater Chem C 5:6962–6972. https://doi.org/10.1039/c7tc01058c

    Article  CAS  Google Scholar 

  35. Na M, Zhang S, Liu J et al (2020) Determination of pathogenic bacteria-Bacillus anthrax spores in environmental samples by ratiometric fluorescence and test paper based on dual-emission fluorescent silicon nanoparticles. J Hazard Mater 386:121956. https://doi.org/10.1016/j.jhazmat.2019.121956

    Article  CAS  Google Scholar 

  36. Donmez M, Yilmaz MD, Kilbas B (2017) Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles. J Hazard Mater 324:593–598. https://doi.org/10.1016/j.jhazmat.2016.11.030

    Article  CAS  Google Scholar 

  37. Wu D, Zhang Z, Chen X et al (2019) A non-luminescent Eu-MOF-based “turn-on” sensor towards an anthrax biomarker through single-crystal to single-crystal phase transition. Chem Commun 55:14918–14921. https://doi.org/10.1039/c9cc08206a

    Article  CAS  Google Scholar 

  38. Zhou Q, Fang Y, Li J et al (2021) A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker. Talanta 222:121548. https://doi.org/10.1016/j.talanta.2020.121548

    Article  CAS  Google Scholar 

  39. Qu S, Song N, Xu G et al (2019) A ratiometric fluorescent probe for sensitive detection of anthrax biomarker based on terbium-covalent organic polymer systems. Sens Actuators B Chem 290:9–14. https://doi.org/10.1016/j.snb.2019.03.110

    Article  CAS  Google Scholar 

  40. Wang Y, Li Y, Qi W et al (2015) Luminescent lanthanide graphene for detection of bacterial spores and cysteine. Chem Commun 51:11022–11025. https://doi.org/10.1039/c5cc02889b

    Article  CAS  Google Scholar 

  41. Wang QX, Xue SF, Chen ZH et al (2017) Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Biosens Bioelectron 94:388–393. https://doi.org/10.1016/j.bios.2017.03.027

    Article  CAS  Google Scholar 

  42. Chen H, Xie Y, Kirillov AM et al (2015) A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chem Commun 51:5036–5039. https://doi.org/10.1039/c5cc00757g

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) Fund (No. 22174058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2646 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Shi, X., Ran, F. et al. Differential sensitization toward lanthanide metal–organic framework for detection of an anthrax biomarker. Microchim Acta 190, 27 (2023). https://doi.org/10.1007/s00604-022-05603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05603-z

Keywords

Navigation