Skip to main content
Log in

Zeolitic imidazolate frameworks as light-responsive oxidase-like mimics for the determination of adenosine triphosphate and discrimination of phenolic pollutants

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In this study, 3,3′,5,5′-tetramethylbenzidine (TMB) was selected as a chromogenic substrate to evaluate the light-responsive oxidase-like activity of different zeolitic imidazolate frameworks (ZIFs). The synthesized ZIFs were systematically characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. Several main operational parameters, including ZIFs and TMB concentrations, pH value, radiation time, and working current, in the reaction process were optimized. The kinetic measurement results show that ZIF-90 exhibits higher affinity to the substrate than horseradish peroxidase. Furthermore, given that adenosine triphosphate (ATP) can specifically combine with Zn2+ binding site and destroy the structure of ZIF-90, a specific and sensitive colorimetric method was established for the quantitative detection of ATP within the range 10 − 240 μM. In addition, on the basis that phenolic pollutants can impact the reaction kinetics diversely on different ZIFs, a sensor array was constructed and successfully applied to differentiate five phenolic pollutants in lake water samples. This work is expected to shed light on the establishment of ZIF-based light-responsive oxidase-like nanozymes for the highly selective colorimetric detection and sensor array.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Huang Y-Y, Mu X-Y, Wang J-Y, Wang Y, Xie J, Ying R-F, Su E (2022) The recent development of nanozymes for food quality and safety detection. J Mater Chem B 10(27):1359–1368. https://doi.org/10.1039/d2tb90092k

    Article  CAS  Google Scholar 

  2. Ai Y-J, Hu Z-N, Liang X-P, Sun H-B, Xin H-B, Liang Q-L (2021) Recent advances in nanozymes: from matters to bioapplications. Adv Funct Mater 32(14):2110432. https://doi.org/10.1002/adfm.202110432

    Article  CAS  Google Scholar 

  3. Gao L-Z, Zhuang J, Nie L, Zhang J-B, Zhang Y, Gu N, Wang T-H, Feng J, Yang D-L, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  Google Scholar 

  4. Zhang X-J, Lin S-J, Liu S-W, Tan X-L, Dai Y, Xia F (2021) Advances in organometallic/organic nanozymes and their applications. Coord Chem Rev 429:213652. https://doi.org/10.1016/j.ccr.2020.213652

    Article  CAS  Google Scholar 

  5. Chen Y-F, Zhang Y, Jiao L, Yan H-Y, Gu W-L, Zhu C-Z (2021) Research progress of carbon-based nanozymes for biosensing. Chin J Anal Chem 49(6):907–921. https://doi.org/10.19756/j.issn.0253-3820.211258

    Article  CAS  Google Scholar 

  6. Li S-Q, Liu X-D, Chai H-X, Huang Y-M (2018) Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trac-Trends Anal Chem 105:391–403. https://doi.org/10.1016/j.trac.2018.06.001

    Article  CAS  Google Scholar 

  7. Wang X-Y, Gao X-J, Qin L, Wang C-D, Song L, Zhou Y-N, Zhu G, Cao W, Lin S-C, Zhou L-Q, Wang K, Zhang H, Jin Z, Wang P, Gao X, Wei H (2019) e(g) occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat Commun 10:704. https://doi.org/10.1038/s41467-019-08657-5

    Article  CAS  Google Scholar 

  8. Zhao H-Q, Zhang R-F, Yan X-Y, Fan K-L (2021) Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J Mater Chem B 9(35):6939–6957. https://doi.org/10.1039/d1tb00720c

    Article  CAS  Google Scholar 

  9. Chong Y, Liu Q, Ge C-C (2021) Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications. Nano Today 37:101076. https://doi.org/10.1016/j.nantod.2021.101076

    Article  CAS  Google Scholar 

  10. Walther R, van den Akker W, Fruergaard A-S, Zelikin A-N (2020) Nanozymes and glucuronides: glucuronidase, esterase, and/or transferase activity. Small 16(44):e2004280. https://doi.org/10.1002/smll.202004280

    Article  CAS  Google Scholar 

  11. Zhang X-J, Lin S-J, Wang Y-C, Xia F, Dai Y (2021) Cofactor-free organic nanozyme with assembly-induced catalysis and light-regulated activity. Chem Eng J 426:130855. https://doi.org/10.1016/j.cej.2021.130855

    Article  CAS  Google Scholar 

  12. Ni P-J, Liu S-Y, Wang B, Chen C-X, Jiang Y-Y, Zhang C-H, Chen J-B, Lu Y-Z (2021) Light-responsive Au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. J Hazard Mater 411:125106. https://doi.org/10.1016/j.jhazmat.2021.125106

    Article  CAS  Google Scholar 

  13. Zhao J, Wang H-H, Geng H-Q, Yang Q, Tong Y, He W-W (2021) Au/N-doped carbon dot nanozymes as light-controlled anti- and pro-oxidants. ACS Appl Nano Mater 4(7):7253–7263. https://doi.org/10.1021/acsanm.1c01215

    Article  CAS  Google Scholar 

  14. Huang L-J, Chen K, Zhang W-T, Zhu W-X, Liu X-N, Wang J, Wang R, Hu N, Suo Y-R, Wang J-L (2018) ssDNA-tailorable oxidase-mimicking activity of spinel MnCo2O4 for sensitive biomolecular detection in food sample. Sens Actuator B-Chem 269:79–87. https://doi.org/10.1016/j.snb.2018.04.150

    Article  CAS  Google Scholar 

  15. Liu Y-F, Wang X-Y, Wang Q, Zhang Y-H, Liu Q-Y, Liu S-J, Li S-R, Du Y, Wei H (2021) Structurally engineered light-responsive nanozymes for enhanced substrate specificity. Anal Chem 93(45):15150–15158. https://doi.org/10.1021/acs.analchem.1c03610

    Article  CAS  Google Scholar 

  16. Yuan M-Y, Xiao S-J, Wu Y-N, Qiu A-T, Guo J, Zhong Z-Q, Zhang L (2022) Visual detection of captopril based on the light activated oxidase-mimic activity of covalent organic framework. Microchem J 175:107080. https://doi.org/10.1016/j.microc.2021.107080

    Article  CAS  Google Scholar 

  17. Gross A-F, Sherman E, Vajo J-J (2012) Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans 41(18):5458–5460. https://doi.org/10.1039/c2dt30174a

    Article  CAS  Google Scholar 

  18. Wu R-B, Qian X-K, Rui X-H, Liu H, Yadian B-L, Zhou K, Wei J, Yan Q-Y, Feng X-Q, Long Y, Wang L, Huang Y (2014) Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10(10):1932–1938. https://doi.org/10.1002/smll.201303520

    Article  CAS  Google Scholar 

  19. Chaikittisilp W, Hu M, Wang H, Huang H-S, Fujita T, Wu K-C, Chen L-C, Yamauchi Y, Ariga K (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun (Camb) 48(58):7259–7261. https://doi.org/10.1039/c2cc33433j

    Article  CAS  Google Scholar 

  20. Wang Y-W, Zhang D, Zeng Y, Qi P (2021) Selective ATP detection via activation of MoS2-based artificial nanozymes inhibited by ZIF-90 nanoparticles. ACS Appl Nano Mater 4(11):11545–11553. https://doi.org/10.1021/acsanm.1c01986

    Article  CAS  Google Scholar 

  21. Zou Y-L, Liu X-Y, Zhang H-X (2021) A dual enzyme-containing microreactor for consecutive digestion based on hydrophilic ZIF-90 with size-selective sheltering. Colloid Surf B-Biointerfaces 197:111422. https://doi.org/10.1016/j.colsurfb.2020.111422

    Article  CAS  Google Scholar 

  22. Zheng L-Z, Kang X-W, Ji Y, Zou Z-J, Wang Y-M, Chen J-F (2015) Preparation of Ag/ZIF-90 self-assembled membrane and its high SERS performance. Chin J Inorg Chem 31(3):465–471

    CAS  Google Scholar 

  23. Dong H-J, Fan Y-Y, Zhang W, Gu N, Zhang Y (2019) Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug Chem 30(5):1273–1296. https://doi.org/10.1021/acs.bioconjchem.9b00171

    Article  CAS  Google Scholar 

  24. Cheng Q, Yang Y, Peng Y-S, Liu M (2020) Pt nanoparticles with high cxidase-like activity and reusability for detection of ascorbic acid. Nanomaterials (Basel) 10(6):1015. https://doi.org/10.3390/nano10061015

    Article  CAS  Google Scholar 

  25. Ci Y-X, Chen L, Wei S (1988) Peroxidase-catalysed fluorescence reaction using tyrosine as substrate. Fresenius Zeitschrift Fur Analytische Chemie 332(3):258–260. https://doi.org/10.1007/BF00492972

    Article  CAS  Google Scholar 

  26. Li S, Zhao X-T, Yu X-X, Wan Y-Q, Yin M-Y, Zhang W-W, Cao B-Q, Wang H (2019) Fe3O4 nanozymes with aptamer-runed catalysis for selective colorimetric analysis of ATP in blood. Anal Chem 91(22):14737–14742. https://doi.org/10.1021/acs.analchem.9b04116

    Article  CAS  Google Scholar 

  27. Zhang W, Wang C, Peng M-H, Ren G-Y, Li K, Lin Y-Q (2020) ATP-responsive laccase@ZIF-90 as a signal amplification platform to achieve indirect highly sensitive online detection of ATP in rat brain. Chem Commun (Camb) 56(47):6436–6439. https://doi.org/10.1039/d0cc02021d

    Article  CAS  Google Scholar 

  28. Xie H, Chai Y, Yuan Y, Yuan R (2017) Highly effective molecule converting strategy based on enzyme-free dual recycling amplification for ultrasensitive electrochemical detection of ATP. Chem Commun (Camb) 53:8368–8371. https://doi.org/10.1039/c7cc03497k

    Article  CAS  Google Scholar 

  29. Kashefi-Kheyrabadi L, Mehrgardi M-A (2012) Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate. Biosens Bioelectron 37:94–98. https://doi.org/10.1016/j.bios.2012.04.045

    Article  CAS  Google Scholar 

  30. Huang Y-F, Chang H-T (2007) Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal Chem 79:4852–4859. https://doi.org/10.1021/ac070023x

    Article  CAS  Google Scholar 

  31. Li S, Zhao X, Yu X, Wan Y, Yin M, Zhang W, Cao B, Wang H (2019) Fe3O4 nanozymes with aptamer-tuned catalysis for selective colorimetric analysis of ATP in blood. Anal Chem 91:14737–14742. https://doi.org/10.1021/acs.analchem.9b04116

    Article  CAS  Google Scholar 

  32. Cheng S, Zheng B, Wang M, Lam M-H, Ge X (2013) Double-functionalized gold nanoparticles with split aptamer for the detection of adenosine triphosphate. Talanta 115:506–511. https://doi.org/10.1016/j.talanta.2013.05.065

    Article  CAS  Google Scholar 

  33. Sancenón F, Descalzo A-B, Martínez-Máñez R, Miranda M-A, Soto J (2001) A colorimetric ATP sensor based on 1,3,5-Triarylpent-2-en-1,5-diones. Angew Chem Int Ed Engl 40:2640–2643. https://doi.org/10.1002/1521-3773(20010716)40:14%3c2640::AID-ANIE2640%3e3.0.CO;2-A

    Article  Google Scholar 

  34. Zhang Y-M, Song J, Shao W-H, Li J (2021) Au@NH2-MIL-125(Ti) heterostructure as light-responsive oxidase-like mimic for colorimetric sensing of cysteine. Microporous Mesoporous Mat 310:110642. https://doi.org/10.1016/j.micromeso.2020.110642

    Article  CAS  Google Scholar 

  35. Abdelhameed R-M, Tobaldi D-M, Karmaoui M (2018) Engineering highly effective and stable nanocomposite photocatalyst based on NH2-MIL-125 encirclement with Ag3PO4 nanoparticles. J Photochem Photobiol A-Chem 351:50–58. https://doi.org/10.1016/j.jphotochem.2017.10.011

    Article  CAS  Google Scholar 

  36. Barrios-Estrada C, de Jesús R-A, Muñoz-Gutiérrez B-D, Iqbal H-M-N, Kannan S, Parra-Saldívar R (2018) Emergent contaminants: endocrine disruptors and their laccase-assisted degradation-a review. Sci Total Environ 612:1516–1531. https://doi.org/10.1016/j.scitotenv.2017.09.013

    Article  CAS  Google Scholar 

  37. Khatoon N, Jamal A, Ali M-I (2017) Polymeric pollutant biodegradation through microbial oxidoreductase: a better strategy to safe environment. Int J Biol Macromol 105:9–16. https://doi.org/10.1016/j.ijbiomac.2017.06.047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFC2103300).

Author information

Authors and Affiliations

Authors

Contributions

Shi-Jun Yin: conceptualization, methodology, investigation, and writing-original draft. Guo-Ying Chen: investigation. Chun-Yan Zhang: investigation. Jia-Li Wang: investigation. Feng-Qing Yang: supervision, project administration, funding acquisition, and writing—review and editing.

Corresponding author

Correspondence to Feng-Qing Yang.

Ethics declarations

Institutional review board statement

Rabbit plasma used in this study were purchased from Shanghai YuanYe Biological Technology Co., Ltd., China, which are biological products, thus not applicable to Ethics statement.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9624 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, SJ., Chen, GY., Zhang, CY. et al. Zeolitic imidazolate frameworks as light-responsive oxidase-like mimics for the determination of adenosine triphosphate and discrimination of phenolic pollutants. Microchim Acta 190, 25 (2023). https://doi.org/10.1007/s00604-022-05602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05602-0

Keywords

Navigation