Skip to main content
Log in

3-Aminophenylboronic acid–functionalized molybdenum disulfide quantum dots for fluorescent determination of hypochlorite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A simple method is reported for hypochlorite determination based on fluorescence 3-aminophenylboronic acid–functionalized molybdenum disulfide quantum dots (B-MoS2 QDs). B-MoS2 QDs with strong fluorescence at 380 nm have been successfully synthesized by the amidation reaction between APBA and hydrothermal MoS2 QDs. Hypochlorite sensing was proposed utilizing the fluorescent quenching effect of 3,3ʹ,5,5ʹ-tetramethylbenzidine dihydrochloride (TMB) on B-MoS2 QDs and the fast redox reaction between hypochlorite and TMB. The fluorescent quenching effect of TMB to B-MoS2 QDs was proved to be caused by static dynamic quenching and inner filter effect. A good linear relationship was obtained in the hypochlorite concentration range from 1 to 20 μM, and the limit of detection (LOD) was 36.8 nM. The proposed fluorescent detection assay was simple and fast, taking only 5 min at room temperature. Satisfactory results were obtained in the standard spike recovery tests on tap water and milk samples, which indicate high potential in constructing fluorescent bio-detection assays.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lou Z, Li P, Han K (2015) Redox-responsive fluorescent probes with different design strategies. Accounts Chem Res 48:1358–1368

    Article  CAS  Google Scholar 

  2. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531

    Article  CAS  Google Scholar 

  3. Zwierzchowski G, Ametaj BN (2018) Minerals and heavy metals in the whole raw milk of dairy cows from different management systems and countries of origin: a meta-analytical study. J Agr Food Chem 66:6877–6888

    Article  CAS  Google Scholar 

  4. Gondim CdS, Junqueira RG, Souza SVCd, Ruisánchez I, Callao MP (2017) Detection of several common adulterants in raw milk by MID-infrared spectroscopy and one-class and multi-class multivariate strategies. Food Chem 230:68–75

    Article  CAS  Google Scholar 

  5. Allegra M, Furtmüller PG, Jantschko W, Zederbauer M, Tesoriere L, Livrea MA, Obinger C (2005) Mechanism of interaction of betanin and indicaxanthin with human myeloperoxidase and hypochlorous acid. Biochem Bioph Res Co 332:837–844

    Article  CAS  Google Scholar 

  6. Ma H, Song B, Wang Y, Cong D, Jiang Y, Yuan J (2017) Dual-emissive nanoarchitecture of lanthanide-complex-modified silica particles for in vivo ratiometric time-gated luminescence imaging of hypochlorous acid. Chem Sci 8:150–159

    Article  CAS  Google Scholar 

  7. Li X, Lin X, Lin S, Sun X, Gao D, Liu B, Zhao H, Zhang J, Cong S, Wang L (2019) Au nanospheres@Ag nanorods for wide linear range colorimetric determination of hypochlorite. ACS Appl Nano Mater 2:3161–3168

    Article  CAS  Google Scholar 

  8. Kumaravel S, Balamurugan TST, Jia SH, Lin HY, Huang S-T (2020) Ratiometric electrochemical molecular switch for sensing hypochlorous acid: applicable in food analysis and real-time in-situ monitoring. Anal Chim Acta 1106:168–175

    Article  CAS  Google Scholar 

  9. Qiao W, Ma T, Wang S, Li L, Liu M, Jiang H, Wu Y, Zhu J, Za Li (2021) Designing squaraine dyes with bright deep-red aggregation-induced emission for specific and ratiometric fluorescent detection of hypochlorite. Adv Funct Mater 31:2105452

    Article  CAS  Google Scholar 

  10. Li Y, He Y, Ge Y, Song G, Zhou J (2021) Smartphone-assisted visual ratio-fluorescence detection of hypochlorite based on copper nanoclusters. Spectrochim Acta A 255:119740

    Article  CAS  Google Scholar 

  11. Liu M, Bai Y, He Y, Zhou J, Ge Y, Zhou J, Song G (2021) Facile microwave-assisted synthesis of Ti3C2 MXene quantum dots for ratiometric fluorescence detection of hypochlorite. Microchim Acta 188:15

    Article  CAS  Google Scholar 

  12. Fu X, Wu J, Xu H, Wan P, Fu H, Mei Q (2021) Luminescence nanoprobe in the near-infrared-II window for ultrasensitive detection of hypochlorite. Anal Chem 93:15696–15702

    Article  CAS  Google Scholar 

  13. James Singh K, Ahmed T, Gautam P, Sadhu AS, Lien DH, Chen SC, Chueh YL, Kuo HC (2021) Recent advances in two-dimensional quantum dots and their applications. Nanomaterials 11:1549

    Article  Google Scholar 

  14. Sharma P, Mehata MS (2020) Colloidal MoS2 quantum dots based optical sensor for detection of 2,4,6-TNP explosive in an aqueous medium. Opt Mater 100:109646

    Article  CAS  Google Scholar 

  15. Cao H, Dong W, Wang T, Shi W, Fu C, Wu Y (2020) Aptasensor based on MoS2 quantum dots with upconversion fluorescence for microcystin-LR detection via the inner filter effect. ACS Sustain Chem Eng 8:10939–10946

    CAS  Google Scholar 

  16. Jeong S, Yoo D, Jt J, Kim M, Cheon J (2012) Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J Am Chem Soc 134:18233–18236

    Article  CAS  Google Scholar 

  17. Wang Y, Zhang P, Lu Q, Wang Y, Fu W, Tan Q, Luo W (2018) Water-soluble MoS2 quantum dots are a viable fluorescent probe for hypochlorite. Microchim Acta 185:233

    Article  Google Scholar 

  18. Zhong Y, Yi T (2019) MoS2 quantum dots as a unique fluorescent “turn-off–on” probe for the simple and rapid determination of adenosine triphosphate. J Mater Chem B 7:2549–2556

    Article  CAS  Google Scholar 

  19. Fong JFY, Chin SF, Ng SM (2016) A unique “turn-on” fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosens Bioelectron 85:844–852

    Article  CAS  Google Scholar 

  20. Wu Z, Nan D, Yang H, Pan S, Liu H, Hu X (2019) A ratiometric fluorescence-scattered light strategy based on MoS2 quantum dots/CoOOH nanoflakes system for ascorbic acid detection. Anal Chim Acta 1091:59–68

    Article  CAS  Google Scholar 

  21. Zeng W, Liu L, Yi Y, Wu Y, Sun N, Lv B, Zhu G (2019) A double-signal nanoprobe based on molybdenum disulfide quantum dots/manganese dioxide nanosheets for glutathione detection. Microchem J 150:104149

    Article  CAS  Google Scholar 

  22. Zhong Y, Zou Y, Yang X, Lu Z, Wang D (2021) Ascorbic acid detector based on fluorescent molybdenum disulfide quantum dots. Microchim Acta 189:19

    Article  Google Scholar 

  23. Zhong Y, Xue F, Wei P, Li R, Cao C, Yi T (2018) Water-soluble MoS2 quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect. Nanoscale 10:21298–21306

    Article  CAS  Google Scholar 

  24. Palladino P, Torrini F, Scarano S, Minunni M (2020) 3,3′,5,5′-Tetramethylbenzidine as multi-colorimetric indicator of chlorine in water in line with health guideline values. Anal Bioanal Chem 412:7861–7869

    Article  CAS  Google Scholar 

  25. Zhang J, Yang X (2013) A simple yet effective chromogenic reagent for the rapid estimation of bromate and hypochlorite in drinking water. Analyst 138:434–437

    Article  CAS  Google Scholar 

  26. Serrat FB (1994) Colorimetric method for determination of chlorine with 3,3′,5,5′-tetramethylbenzidine. Talanta 41:2091–2094

    Article  CAS  Google Scholar 

  27. Guo Y, Ma Q, Cao F, Zhao Q, Ji X (2015) Colorimetric detection of hypochlorite in tap water based on the oxidation of 3,3′,5,5′-tetramethyl benzidine. Anal Methods 7:4055–4058

    Article  CAS  Google Scholar 

  28. Yi Y, Zeng W, Zhu G (2021) β-Cyclodextrin functionalized molybdenum disulfide quantum dots as nanoprobe for sensitive fluorescent detection of parathion-methyl. Talanta 222:121703

    Article  CAS  Google Scholar 

  29. Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X, Zhang X (2015) Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging. Small 11:4158–4164

    Article  CAS  Google Scholar 

  30. Luo M, Hua Y, Liang Y, Han J, Liu D, Zhao W, Wang P (2017) Synthesis of novel β-cyclodextrin functionalized S, N codoped carbon dots for selective detection of testosterone. Biosens Bioelectron 98:195–201

    Article  CAS  Google Scholar 

  31. Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8:5297–5303

    Article  CAS  Google Scholar 

  32. Xu S, Che S, Ma P, Zhang F, Xu L, Liu X, Wang X, Song D, Sun Y (2019) One-step fabrication of boronic-acid-functionalized carbon dots for the detection of sialic acid. Talanta 197:548–552

    Article  CAS  Google Scholar 

  33. Li XG, Zhang F, Gao Y, Zhou QM, Zhao Y, Li Y, Huo JZ, Zhao XJ (2016) Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins. Biosens Bioelectron 86:270–276

    Article  CAS  Google Scholar 

  34. Karimi F, Rajabi HR, Kavoshi L (2019) Rapid sonochemical water-based synthesis of functionalized zinc sulfide quantum dots: study of capping agent effect on photocatalytic activity. Ultrason Sonochem 57:139–146

    Article  CAS  Google Scholar 

  35. Singh VK, Mishra H, Ali R, Umrao S, Srivastava R, Abraham S, Misra A, Singh VN, Mishra H, Tiwari RS, Srivastava A (2019) In situ functionalized fluorescent WS2-QDs as sensitive and selective probe for Fe3+ and a detailed study of its fluorescence quenching. ACS Appl Nano Mater 2:566–576

    Article  CAS  Google Scholar 

  36. Srivastava RR, Singh VK, Srivastava A (2020) Facile synthesis of highly fluorescent water-soluble SnS2 QDs for effective detection of Fe3+ and unveiling its fluorescence quenching mechanism. Opt Mater 109:110337

    Article  CAS  Google Scholar 

  37. Huang T, Yan S, Yu Y, Xue Y, Yu Y, Han C (2022) Dual-responsive ratiometric fluorescent probe for hypochlorite and peroxynitrite detection and imaging in vitro and in vivo. Anal Chem 94:1415–1424

    Article  CAS  Google Scholar 

  38. Li MY, Li K, Liu YH, Zhang H, Yu KK, Liu X, Yu XQ (2020) Mitochondria-immobilized fluorescent probe for the detection of hypochlorite in living cells, tissues, and zebrafishes. Anal Chem 92:3262–3269

    Article  CAS  Google Scholar 

  39. Yue Y, Yin C, Huo F, Chao J, Zhang Y (2014) The application of natural drug-curcumin in the detection hypochlorous acid of real sample and its bioimaging. Sensor Actuat B-Chem 202:551–556

    Article  CAS  Google Scholar 

  40. Shen SL, Zhao X, Zhang XF, Liu XL, Wang H, Dai YY, Miao JY, Zhao BX (2017) A mitochondria-targeted ratiometric fluorescent probe for hypochlorite and its applications in bioimaging. J Mater Chem B 5:289–295

    Article  CAS  Google Scholar 

  41. Wang H, Zhang P, Hong Y, Zhao B, Yi P, Chen J (2017) Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Polym Chem 8:5795–5802

    Article  CAS  Google Scholar 

  42. Tan H, Wu X, Weng Y, Lu Y, Huang ZZ (2020) Self-assembled FRET nanoprobe with metal–organic framework as a scaffold for ratiometric detection of hypochlorous acid. Anal Chem 92:3447–3454

    Article  CAS  Google Scholar 

  43. Ma Y, Xu G, Wei F, Cen Y, Xu X, Shi M, Cheng X, Chai Y, Sohail M, Hu Q (2018) One-pot synthesis of a magnetic, ratiometric fluorescent nanoprobe by encapsulating Fe3O4 magnetic nanoparticles and dual-emissive rhodamine B modified carbon dots in metal–organic framework for enhanced HClO sensing. ACS Appl Mater Inter 10:20801–20805

    Article  CAS  Google Scholar 

  44. Simões EFC, Leitão JMM, da Silva JCGE (2016) Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 183:1769–1777

    Article  Google Scholar 

  45. Ding Y, Ling J, Cai J, Wang S, Li X, Yang M, Zha L, Yan J (2016) A carbon dot-based hybrid fluorescent sensor for detecting free chlorine in water medium. Anal Methods 8:1157–1161

    Article  CAS  Google Scholar 

  46. Xiong J, Xiao Y, Liang J, Sun J, Gao L, Zhou Q, Hong D, Tan K (2023) Dye-based dual-emission Eu-MOF synthesized by post-modification for the sensitive ratio fluorescence visualization sensing of ClO. Spectrochim Acta A 285:121863

  47. Zhang J, Li R, Bei Y, Xu XD, Kang W (2023) Design of a large Stokes shift ratiometric fluorescent sensor with hypochlorite detection towards the potential application as invisible security ink. Spectrochim Acta A 285:121859

    Article  CAS  Google Scholar 

  48. Cl Z, Xl Li, Jiang Yh, Yn Z, Yx X, Sun Yd, Liu C (2022) A super large Stokes shift ratiometric fluorescent probe for highly selective sensing of ClO in bio-imaging and real water samples. Spectrochim Acta A 283:121736

    Article  Google Scholar 

  49. Wang K, Liu Y, Liu C, Zhu H, Li X, Yu M, Liu L, Sang G, Sheng W, Zhu B (2022) A new-type HOCl-activatable fluorescent probe and its applications in water environment and biosystems. Sci Total Environ 839:156164

    Article  CAS  Google Scholar 

  50. Xu T, Li H, Yang H, Yang Z, Jia X, Zhao S, Yang Z, Liu X (2022) Nitrogen-doped and surface functionalized CDs: fluorescent probe for cellular imaging and environmental sensing of ClO. J Fluoresc 32:1591–1600

    Article  CAS  Google Scholar 

  51. Karuk Elmas SN (2022) A coumarin-based fluorescence chemosensor for the determination of Al3+ and ClO with different fluorescence emission channels. Inorg Chim Acta 537:120953

    Article  CAS  Google Scholar 

  52. Yu L, Su P, Huang S, Li X, Yin R, Wang N, Sun M, Wang S (2022) Simple and efficient synthesis of purple-red carbon spheres and construction of fluorescence resonance energy system for hypochlorite detection. Dyes Pigments 202:110265

    Article  CAS  Google Scholar 

  53. Wang L, Jana J, Chung JS, Hur SH (2021) High quantum yield aminophenylboronic acid-functionalized N-doped carbon dots for highly selective hypochlorite ion detection. Spectrochim Acta A 260:119895

    Article  CAS  Google Scholar 

  54. Guo D, Wu S, Xu X, Niu X, Li X, Li Z, Pan J (2019) A novel label-free hypochlorite amperometric sensor based on target-induced oxidation of benzeneboronic acid pinacol ester. Chem Eng J 373:1–7

    Article  CAS  Google Scholar 

  55. Wang ZX, Jin X, Gao YF, Kong FY, Wang WJ, Wang W (2019) Fluorometric and colorimetric determination of hypochlorite using carbon nanodots doped with boron and nitrogen. Microchim Acta 186:328

    Article  Google Scholar 

  56. Li P, Yoshimura T, Furuta T, Yanagawa T, Shiozaki K, Kobayashi T (2019) Sunlight caused interference in outdoor N, N-diethyl-p-phenylenediamine colorimetric measurement for residual chlorine and the solution for on-site work. Ecotox Environ Safe 169:640–644

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the Opening Project of Key Laboratory of Textile Fiber and Products, Ministry of Education (Fzxw2021023), the Young and Middle-aged Talent Project of Hubei Provincial Department of Education (Q20221712), the National Key Research and Development Program (SQ2022YFB3800172), the National Natural Science Foundation of China (U20A20257), and the Special Fund of Taishan Industry Leading Talents Project. We also thank “Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application” and “Wuhan Engineering Technology Research Center for Advanced Fibers” for providing partial support for materials processing.

Author information

Authors and Affiliations

Authors

Contributions

Yaping Zhong: conceptualization, writing—review and editing, funding acquisition. Lijuan Guo: methodology, formal analysis. Zhentan Lu: validation. Dong Wang: validation, resources, supervision.

Corresponding authors

Correspondence to Yaping Zhong or Dong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 255 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Guo, L., Lu, Z. et al. 3-Aminophenylboronic acid–functionalized molybdenum disulfide quantum dots for fluorescent determination of hypochlorite. Microchim Acta 190, 7 (2023). https://doi.org/10.1007/s00604-022-05598-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05598-7

Keywords

Navigation