Skip to main content
Log in

Development of conducting cellulose paper for electrochemical sensing of procalcitonin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical paper-based sensor was developed for the detection of bacterial infection (BI)-specific biomarker procalcitonin (PCT). Reduced graphene oxide-gold nanoparticles (rGO-AuNP) and poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were synthesized and were fabricated to a disposable, portable, and inexpensive cellulose fiber paper (CFP) substrate. rGO-AuNP-PEDOT:PSS nanocomposite-modified conductive paper-based biosensing platform was efficaciously fabricated by a constant and simple coating procedure. rGO-AuNP-PEDOT:PSS nanocomposite-modified conductive paper electrode was found to provide a sensitive and conductive substrate for PCT detection. The presence of rGO-AuNP-PEDOT:PSS nanocomposite on CFP substate was investigated by Fourier transform infrared spectrometry, field emission scanning electron microscopy, ultraviolet–visible spectroscopy, and X-ray diffraction studies. The electrochemical behavior of rGO-AuNP-PEDOT:PSS @CFP surface was studied with impedance spectroscopy, cyclic voltammetry, and chronoamperometry techniques. This low-cost paper-based biosensor has a linear range for PCT of 1 × 103 to 6 × 107 fg mL−1. This developed sensor exhibited good reproducibility with a relative standard deviation (RSD) of about 3.7%. The proposed CFP-based biosensor has been proven as an accelerated simple point-of-care (POC) exploratory approach for early PCT diagnosis in inadequate areas with limited production facilities, computational techniques, and highly skilled experts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data is available within the manuscript.

References

  1. Gupta, Y. and A.S. Ghrera (2021) Recent advances in gold nanoparticle-based lateral flow immunoassay for the detection of bacterial infection. Archi.Micro biol. 3767-3784. https://doi.org/10.1007/s00203-021-02357-9

  2. Joseph P, Godofsky E (2018) Outpatient antibiotic stewardship: a growing frontier—combining myxovirus resistance protein A with other biomarkers to improve antibiotic use. Open Forum Infect Dis 5(2):024. https://doi.org/10.1093/ofid/ofy024

    Article  CAS  Google Scholar 

  3. Vijayan AL, Vanimaya R, Shilpa S, R., Lakshmi, S., Kartik, R., & G, Manoj, (2017) Procalcitonin: a promising diagnostic marker for sepsis and antibiotic therapy. J Intensive Care 5(1):51. https://doi.org/10.1186/s40560-017-0246-8

    Article  Google Scholar 

  4. Naresh, Varnakavi, & Lee, Nohyun (2021) A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, (4). https://doi.org/10.3390/s21041109

  5. Naghdi, Samira, Rhee, Kyong Y., Hui, David, & Park, Soo J. (2018) A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications. Coatings, 8(8). https://doi.org/10.3390/coatings8080278.

  6. Ghrera AS (2019) Quantum dot modified interface for electrochemical immunosensing of procalcitonin for the detection of urinary tract infection. Anal Chimi Acta 1056:26–33. https://doi.org/10.1016/j.aca.2018.12.047

    Article  CAS  Google Scholar 

  7. Song X, Yu S, Zhao L, Guo Y, Ren X, Ma H, Wang S, Luo C, Li Y, Wei Q (2022) Efficient ABEI-dissolved O2-Ce(III, IV)-MOF ternary electrochemiluminescent system combined with self-assembled microfluidic chips for bioanalysis. Anal. Chem. 949363-9371. https://doi.org/10.1021/acs.analchem.2c01199

  8. Yue Q, Li X, Xu X, Huang X, Cao D, Wei Q, Cao W (2022) Ratiometric electrochemical immunoassay for procalcitonin based on dual signal probes: Ag NPs and Nile blue A. Microchim Acta 1(189):126. https://doi.org/10.1007/s00604-022-05225-5

    Article  CAS  Google Scholar 

  9. Ge XY, Zhang JX, Feng YG, Wang AJ, Mei LP, Feng JJ (2022) Label-free electrochemical biosensor for determination of procalcitonin based on graphene-wrapped Co nanoparticles encapsulated in carbon nanobrushes coupled with AuPtCu nanodendrites. Mikrochim Acta 189:110. https://doi.org/10.1007/s00604-022-05179-8

    Article  CAS  Google Scholar 

  10. Ghrera AS, Pandey CM, Malhotra BD (2018) Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection. Sens Actuators B: Chem 266:329–336. https://doi.org/10.1016/j.snb.2018.03.118

    Article  CAS  Google Scholar 

  11. Lakard, Boris (2020) Electrochemical biosensors based on conducting polymers: a review. App Sci 10 (18). https://doi.org/10.3390/app10186614

  12. Zaidi SA, Shin JH (2016) Recent developments in nanostructure based electrochemical glucose sensors. Talanta 149:30–42. https://doi.org/10.1016/j.talanta.2015.11.033

    Article  CAS  Google Scholar 

  13. Nasir, Salisu, Hussein, Mohd Z., Zainal, Zulkarnain, & Yusof, Nor A (2018). Carbon-based nanomaterials/allotropes: a glimpse of their synthesis, properties and some applications. Materials, 11(2). https://doi.org/10.3390/ma11020295

  14. Leng J, Wang Z, Wang J, Wu H-H, Yan G, Li X, Guo Z (2019) Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chemi Soc Rev 48(11):3015–3072. https://doi.org/10.1039/C8CS00904J

    Article  CAS  Google Scholar 

  15. Xiao T, Huang J, Wang D, Meng T, Yang X (2020) Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta 206:120210. https://doi.org/10.1016/j.talanta.2019.120210

    Article  CAS  Google Scholar 

  16. Gupta Y, Ghrera AS (2022) Disposable paper-based biosensing platform for procalcitonin detection. Anal Bioanal Chem Res 10:15–23. https://doi.org/10.22036/ABCR.2022.340432.1761

    Article  Google Scholar 

  17. Gao, Yan-Sha, Xu, Jing-Kun, Lu, Li-Min, Zhu, Xiao-Fei, Wang, Wen-Min, Yang, Tao-Tao, Yu, Yong-Fang (2015) A label-free electrochemical immunosensor for carcinoembryonic antigen detection on a graphene platform doped with poly(3,4-ethylenedioxythiophene)/Au nanoparticles. RSC Advances 86910-86918. https://doi.org/10.1039/C5RA16618G

  18. Saeed AA, Sánchez JL, Acero O, Ciara K, Abbas MN (2017) DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry 118:91–99. https://doi.org/10.1016/j.bioelechem.2017.07.002

    Article  CAS  Google Scholar 

  19. Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu W-W, Voon CH (2017) Synthesis of graphene oxide using modified Hummers method: solvent influence. Procedia Engineering 184:469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  20. Paul G, Verma S, Jalil O, Thakur D, Pandey CM, Kumar D (2021) PEDOT: PSS-grafted graphene oxide-titanium dioxide nanohybrid-based conducting paper for glucose detection. Polym Adv Technol 32(4):1774–1782. https://doi.org/10.1002/pat.5213

    Article  CAS  Google Scholar 

  21. Gupta Y, Sharma A (2021) Electrochemical studies of lateral flow assay test results for procalcitonin detection. J Elec Sci and Engi. https://doi.org/10.5599/jese.1127

    Article  Google Scholar 

  22. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. https://doi.org/10.1039/DF9511100055

    Article  Google Scholar 

  23. Dong Jiaqi, Carpinone Paul L, Pyrgiotakis Georgios, Demokritou Philip, Moudgil Brij M (2020) Synthesis of precision gold nanoparticles using Turkevich method. Kona 37:224–232. https://doi.org/10.14356/kona.2020011

    Article  CAS  Google Scholar 

  24. Suchomel P, Kvitek L, Prucek R, Panacek A, Halder A, Vajda S, Zboril R (2018) Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci Rep 8(1):4589. https://doi.org/10.1038/s41598-018-22976-5

    Article  CAS  Google Scholar 

  25. Gu C-J, Kong F-Y, Chen Z-D, Fan D-H, Fang H-L, Wang W (2016) Reduced graphene oxide-Hemin-Au nanohybrids: facile one-pot synthesis and enhanced electrocatalytic activity towards the reduction of hydrogen peroxide. Biosesn Bioelectron 78:300–307. https://doi.org/10.1016/j.bios.2015.11.035

    Article  CAS  Google Scholar 

  26. Lee SJ, Kim J-Y, Yusoff M, Rashid A, bin, & Jang, Jin, (2015) Plasmonic organic solar cell employing Au NP:PEDOT:PSS doped rGO. RSC Adv 5(30):23892–23899. https://doi.org/10.1039/C5RA02878G

    Article  CAS  Google Scholar 

  27. Bose S, Kuila T, Mishra AK, Kim NH, Lee JH (2012) Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J Mater Chem 22(2019):9696–9703. https://doi.org/10.1039/C2JM00011C

    Article  CAS  Google Scholar 

  28. Yoo D, Kim J, Kim JH (2014) Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res 7(5):717–730. https://doi.org/10.1007/s12274-014-0433-z

    Article  CAS  Google Scholar 

  29. Zhou H, Yao W, Li G, Wang J, Lu Y (2013) Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity. Carbon 59:495–502. https://doi.org/10.1016/j.carbon.2013.03.045

    Article  CAS  Google Scholar 

  30. Yang W, Zhao Y, He X, Chen Y, Xu J, Li S, Jiang Y (2015) Flexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance. Nanoscale Res Lett 10(1):222. https://doi.org/10.1186/s11671-015-0932-1

    Article  CAS  Google Scholar 

  31. Pananon P, Sriprachuabwong C, Wisitsoraat A, Chuysinuan P, Tuantranont A, Saparpakorn P, Dechtrirat D (2018) A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine. RSC Adv 8(2018):12724–12732. https://doi.org/10.1039/C8RA01564C

    Article  CAS  Google Scholar 

  32. Krishnamurthy S, Esterle A, Sharma NC et al (2014) Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res Lett 9:627. https://doi.org/10.1186/1556-276X-9-627

    Article  CAS  Google Scholar 

  33. Mercante LA, Facure MHM, Sanfelice RC, Migliorini FL, Mattoso LHC, Correa DS (2017) One-pot preparation of PEDOT:PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H2O2. Appl Sur Sci 407:162–170. https://doi.org/10.1016/j.apsusc.2017.02.156

    Article  CAS  Google Scholar 

  34. Narang J, Malhotra N, Singhal C, Mathur A, Chakraborty D, Anil A, Pundir CS (2017) Point of care with micro fluidic paper based device integrated with nano zeolite–graphene oxide nanoflakes for electrochemical sensing of ketamine. Biosen Bioelectron 88:249–257. https://doi.org/10.1016/j.bios.2016.08.043

    Article  CAS  Google Scholar 

  35. Ruecha R, Nipapan S, Kwanwoo C, Orawon, & Rodthongkum, Nadnudda, (2019) Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sens Actuators B: Chem 279:298–304. https://doi.org/10.1016/j.snb.2018.10.024

    Article  CAS  Google Scholar 

  36. Kumar S, Umar M, Saifi A, Kumar S, Augustine S, Srivastava S, Malhotra BD (2019) Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT:PSS. Anal Chimi Acta 1056:135–145. https://doi.org/10.1016/j.aca.2018.12.053

    Article  CAS  Google Scholar 

  37. Okuno J, Maehashi K, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens Bioelectr 22(2007):2377–2381. https://doi.org/10.1016/j.bios.2010.09.038

    Article  CAS  Google Scholar 

  38. Srivastava S, Vinod Kumar Md, Ali A, Solanki PR, Srivastava A, Sumana G, Saxena PS, Joshi AG, Malhotra BD (2013) Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 5:3043–3051. https://doi.org/10.1039/C3NR32242D

    Article  CAS  Google Scholar 

  39. Azahar Ali Md, Srivastava S, Agrawal VV, Willander M, John R, Malhotra BD (2016) A biofunctionalized quantum dot–nickel oxide nanorod based smart platform for lipid detection. J Mat Chem B 4:2706–2714. https://doi.org/10.1039/C5TB02578H

    Article  CAS  Google Scholar 

  40. Singh R, Hong S, Jang J (2017) Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci Rep 7(2017):42771. https://doi.org/10.1038/srep42771

    Article  CAS  Google Scholar 

  41. Bhardwaj J, Devarakonda S, Kumar S, Jang J (2017) Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sens Actuat B: Chem 253:115–123. https://doi.org/10.1016/j.snb.2017.06.108

    Article  CAS  Google Scholar 

  42. Chauhan D, Solanki PR (2019) Hydrophilic and insoluble electrospun cellulose acetate fiber-based biosensing Ppatform for 25-hydroxy vitamin-D3 detection. ACS App Poly Mate 1(7):1613–1623. https://doi.org/10.1021/acsapm.9b00179

    Article  CAS  Google Scholar 

  43. Boonkaew Suchanat, Jang Ilhoon, Noviana Eka, Siangproh Weena, Chailapakul Orawon, Henry Charles S (2021) Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers. Sens Actuators B Chem 330:129336. https://doi.org/10.1016/j.snb.2020.129336

    Article  CAS  Google Scholar 

  44. Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF (2021) Biomimetic electrochemical sensors: new horizons and challenges in biosensing applications. Biosens Bioelectron 185:113242. https://doi.org/10.1016/j.bios.2021.113242

    Article  CAS  Google Scholar 

  45. Sahu S, Dutta G (2021) Emerging evidence for serum procalcitonin estimation at point-of-care and advancement in quantitative sensing strategies over the past decade. Sensors Int 2:100107. https://doi.org/10.1016/j.sintl.2021.100107

    Article  Google Scholar 

  46. Meisner M (2002) Pathobiochemistry and clinical use of procalcitonin. Clin Chim Acta 23:17–29. https://doi.org/10.1016/S0009-8981(02)00101-8

    Article  Google Scholar 

  47. Liu F, Xiang G, Yuan R, Chen X, Luo F, Jiang D, Huang S, Li Y, Pu X (2014) Procalcitonin sensitive detection based on graphene-gold nanocomposite film sensor platform and single-walled carbon nanohorns/hollow Pt chains complex as signal tags. Biosens Bioelectron. 60 0-7. https://doi.org/10.1016/j.bios.2014.03.071

  48. Yang L, Xue J, Jia Y, Zhang Y, Wu D, Ma H, Wei Q, Ju H (2019) Construction of well-ordered electrochemiluminescence sensing interface using peptide-based specific antibody immobilizer and N-(aminobutyl)-N-(ethylisoluminol) functionalized ferritin as signal indicator for procalcitonin analysis. Biosens Bioelectron 142:111562. https://doi.org/10.1016/j.bios.2019.111562

    Article  CAS  Google Scholar 

  49. Fang YS, Wang HY, Wang LS, Wang JF (2014) Electrochemical immunoassay for procalcitonin antigen detection based on signal amplification strategy of multiple nanocomposites. Biosens Bioelectron. 51310-6. https://doi.org/10.1016/j.bios.2013.07.035

  50. Liu P, Li C, Zhang R, Tang Q, Wei J, Lu Y, Shen P (2019) An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy. Biosens Bioelectron 126:543–550. https://doi.org/10.1016/j.bios.2018.10.048

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Manipal University for the FESEM, EDX, FT-IR, and UV analysis and acknowledge Delhi Technological University for electrical conductivity measurements.

Funding

A. S. Ghrera thanks financial support received from Science and Engineering Board (DST), India under the Young Scientist project (YSS/2015/001330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Sharma Ghrera.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, Y., Pandey, C.M. & Ghrera, A.S. Development of conducting cellulose paper for electrochemical sensing of procalcitonin. Microchim Acta 190, 32 (2023). https://doi.org/10.1007/s00604-022-05596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05596-9

Keywords

Navigation