Skip to main content
Log in

An “off–on” electrochemiluminescence aptasensor for determination of lincomycin based on CdS QDs/carboxylated g-C3N4

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemiluminescence (ECL) aptasensor for the determination of lincomycin (LIN) was developed based on CdS QDs/carboxylated g-C3N4 (CdS QDs/C-g-C3N4). CdS QDs/C-g-C3N4 served as the substrate of the aptasensor, and then CdS QDs/C-g-C3N4-modified electrode was incubated with aptamer DNA (Apt-DNA). When the non-specific sites of the electrode surface was blocked by 6-mercaptohexanol, the ferrocene-labeled probe (Fer-DNA) was assembled onto the electrode surface through base complementation with Apt-DNA. In the absence of LIN, the ECL signal was quenched effectively by Fer-DNA and a decreased ECL emission (off state) was acquired. On the contrary, LIN was specifically bond with Apt-DNA, and Fer-DNA was detached from the aptasensor surface because of the deformation of Apt-DNA, resulting in an effectively enhanced ECL signal (on state). The constructed ECL aptasensor exhibited a wide detection range for LIN determination (0.05 ng mL−1–100 μg mL−1) with a low detection limit (0.02 ng mL−1). Importantly, the proposed ECL aptasensor showed outstanding accuracy and specificity for LIN determination, and also provided a potential strategy for other antibiotic determinations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Wang MM, Cai C, Zhang B, Liu HL (2018) Characterization and mechanism analysis of lincomycin biodegradation with Clostridium sp. strain LCM-B isolated from lincomycin mycelial residue (LMR). Chemosphere 193:611–617

    Article  CAS  Google Scholar 

  2. Guo YW, Xie X, Diao ZX, Wang YJ, Wang B, Xie KZ, Wang XT, Zhang PY (2021) Detection and determination of spectinomycin and lincomycin in poultry muscles and pork by ASE-SPE-GC–MS/MS. J Food Compos Anal 101:103979

    Article  CAS  Google Scholar 

  3. Kameník Z, Kopecky J, Marckova M, Ulanova D, Novotna J, Pospísil S, Olsovska J (2009) HPLC-fluorescence detection method for determination of key intermediates of the lincomycin biosynthesis in fermentation broth. Anal Bioanal Chem 393:1779–1787

    Article  Google Scholar 

  4. Yi A, Liu ZF, Liu SP, Hu XL (2009) Study on the interaction between palladium (II)-lincomycin chelate and erythosine by absorption, fluorescence and resonance Rayleigh scattering spectra and its analytical applications. Luminescence 24:23–29

    Article  CAS  Google Scholar 

  5. Boonsong K, Chuanuwatanakul S, Wangfuengkanagul N, Chailapakul O (2005) Electroanalysis of lincomycin using boron-doped diamond thin film electrode applied to flow injection system. Sens Actuators B 108:627–632

    Article  CAS  Google Scholar 

  6. Xu GL, Hou JZ, Zhao YN, Bao J, Yang M, Fa HB, Yang YX, Li L, Huo DQ, Hou CJ (2019) Dual-signal aptamer sensor based on polydopamine-gold nanoparticles and exonuclease I for ultrasensitive malathion detection. Sens Actuators B 287:428–436

    Article  CAS  Google Scholar 

  7. Li F, Wang X, Sun X, Guo Y (2018) Multiplex electrochemical aptasensor for detecting multiple antibiotics residues based on carbon fiber and mesoporous carbon-gold nanoparticles. Sens Actuator B 265:217–226

    Article  CAS  Google Scholar 

  8. Shi XJ, Sun JF, Yao Y, Liu HM, Huang JC, Guo YM, Sun X (2020) Novel electrochemical aptasensor with dual signal amplification strategy for detection of acetamiprid. Sci Total Environ 705:135905

    Article  CAS  Google Scholar 

  9. Li WP, Li M, Ge SG, Yan M, Huang JD, Yu JH (2013) Battery-triggered ultrasensitive electrochemiluminescence detection on microfluidic paper-based immunodevice based on dual-signal amplification strategy. Anal Chim Acta 767:66–74

    Article  CAS  Google Scholar 

  10. Lan LY, Yao Y, Ping JF, Ying YB (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514

    Article  CAS  Google Scholar 

  11. Feng XB, Gan N, Lin SC, Li TH, Cao YT, Hu FT, Jiang QL, Chen YJ (2016) Ratiometric electrochemiluminescent aptasensor array for antibiotic based on internal standard method and spatial-resolved technique. Sens Actuator B 226:305–311

    Article  CAS  Google Scholar 

  12. Xiang QJ, Yu JG, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J Phys Chem C 115:7355–7363

    Article  CAS  Google Scholar 

  13. Yang YQ, Jin HF, Zhang C, Gan HH, Yi FT, Wang HQ (2020) Nitrogen-deficient modified P-Cl co-doped graphitic carbon nitride with enhanced photocatalytic performance. J Alloys Compd 821:153439

    Article  CAS  Google Scholar 

  14. Dong GP, Zhang YH, Pan QW, Qiu JR (2014) A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J Photoch Photobio C 20:33–50

    Article  CAS  Google Scholar 

  15. Ou X, Tan XR, Liu XF, Lu QY, Chen SL, Wei SP (2015) A signal-on electrochemiluminescence biosensor for detecting Con A using phenoxy dextrangraphite-like carbon nitride as signal probe. Biosens Bioelectron 70:89–97

    Article  CAS  Google Scholar 

  16. Xu QL, Li HY, Wang CC, Zhang S, Li TY, Jing YM, Zheng YX, Huang W, Zuo JL, You XZ (2012) Synthesis, structure, photophysical and electrochemical properties of series of new fac-triscyclometallated iridium complexes with carbazole or oxadiazole moieties. Inorg Chim Acta 391:50–57

    Article  CAS  Google Scholar 

  17. Cheng N, Tian J, Liu Q, Ge C, Qusti AH, Asiri AM, Al-Youbi AO, Sun X (2013) Aunanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl Mater Interfaces 5:6815–6819

    Article  CAS  Google Scholar 

  18. Cheng C, Huang Y, Wang J, Zheng B, Yuan H, Xiao D (2013) Anodic electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its sensing for rutin. Anal Chem 85:2601–2605

    Article  CAS  Google Scholar 

  19. Chen LC, Zeng XT, Ferhan AR, Chi YW, Kim DH, Chen GN (2015) Signal-on electrochemiluminescent aptasensors based on target controlled permeable films. Chem Commun 51:1035–1038

    Article  CAS  Google Scholar 

  20. Gao JW, Xiong HW, Zhang W, Wang Y, Wang HX, Wen W, Zhang XH, Wang SF (2018) Electrochemiluminescent aptasensor based on β-cyclodextrin/graphitic carbon nitride composite for highly selective and ultrasensitive assay of platelet derived growth factor BB. Carbon 130:416–423

    Article  CAS  Google Scholar 

  21. Zhao WW, Ma ZY, Yu PP, Dong XY, Xu JJ, Chen HY (2011) Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode. Anal Chem 84:917–923

    Article  Google Scholar 

  22. Dong YX, Cao JT, Wang B, Ma SH, Liu YM (2018) Spatial-resolved photoelectrochemical biosensing array based on CdS@g-C3N4 heterojunction: a universal immunosensing platform for accurate detection. ACS Appl Mater Inter 10:3723–3731

    Article  CAS  Google Scholar 

  23. Pang X, Pan J, Gao P, Wang Y, Wang L, Du B, Wei Q (2015) A visible light induced photoelectrochemical aptsensor constructed by aligned ZnO@CdTe core shell nanocable arrays/carboxylated g-C3N4 for the detection of proprotein convertase subtilisin/kexin type 6 gene. Biosens Bioelectron 74:49–58

    Article  CAS  Google Scholar 

  24. Chen L, Huang D, Ren S, Dong T, Chi Y, Chen G (2013) Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale 5:225–230

    Article  CAS  Google Scholar 

  25. Zhang JJ, Kang TF, Hao YC, Lu LP, Cheng SY (2015) Electrochemiluminescent immunosensor based on CdS quantum dots for ultrasensitive detection of microcystinLR. Sens Actuator B 214:117–123

    Article  CAS  Google Scholar 

  26. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135:18–21

    Article  CAS  Google Scholar 

  27. Ma HM, Liu YY, Zhao YH, Li L, Zhang Y, Wu D, Wei Q (2018) Ultrasensitive immunoassay of insulin based on highly efficient electrochemiluminescence quenching of carboxyl-functionalized g-C3N4 through coreactant dual-consumption by NiPd DNAzyme. J Electroanal Chem 818:168–175

    Article  CAS  Google Scholar 

  28. Yang F, Yang F, Tu TT, Liao N, Chai YQ, Yuan R, Zhuo Y (2021) A synergistic promotion strategy remarkably accelerated electrochemiluminescence of SnO2 QDs for MicroRNA detection using 3D DNA walker amplification. Biosens Bioelectron 173:112820

    Article  CAS  Google Scholar 

  29. Zhou X, Zhang W, Zhang Z, Han J, Xie G, Chen S (2020) Ultrasensitive aptasensing of insulin based on hollow porous C3N4/S2O82-/AuPtAg ECL ternary system and DNA walker amplification. Biosens Bioelectron 148:111795

    Article  CAS  Google Scholar 

  30. Zhang X, Peng JJ, Ding YP, Zheng DL, Lin YJ, Chen YW, Gao WH (2020) Rationally designed hierarchical hollow ZnCdS@MoS2 heterostructured cages with efficient separation of photogenerated carriers for photoelectrochemical aptasensing of lincomycin. Sens Actuator B 206:127552

    Article  Google Scholar 

  31. Ge L, Liu Q, Jiang D, Ding LJ, Wen ZR, Guo YS, Ding CF, Wang K (2019) Oxygen vacancy enhanced photoelectrochemical performance of Bi2MoO6/B, N co-doped graphene for fabricating lincomycin aptasensor. Biosens Bioelectron 135:145–152

    Article  CAS  Google Scholar 

  32. Liu XP, Huang B, Mao CJ, Chen JS, Jin BK (2021) Electrochemiluminescence aptasensor for lincomycin antigen detection by using a SnO2/chitosan/g-C3N4 nanocomposite. Talanta 233:122546

    Article  CAS  Google Scholar 

  33. Du XJ, Sun J, Lia Y, Du WH, Jiang D (2022) Self-accelerated electrochemiluminescence luminophor of Ag3PO4-Ti3C2 for trace lincomycin aptasensing. Microchem J 179:107578

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 22104030), Natural Science Foundation of Henan (No 222300420426) and the Innovative Funds Plan of Henan University of Technology (No. 2020ZKCJ03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 233 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Liu, Z., Wang, J. et al. An “off–on” electrochemiluminescence aptasensor for determination of lincomycin based on CdS QDs/carboxylated g-C3N4. Microchim Acta 190, 11 (2023). https://doi.org/10.1007/s00604-022-05587-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05587-w

Keywords

Navigation