Skip to main content
Log in

2D Co3O4 modified by IrO2 nanozyme for convenient detection of aqueous Fe2+ and intercellular H2O2

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A portable sensor for visual monitoring of Fe2+ and H2O2, two-dimensional Co3O4 modified by nano-IrO2 (IrO2@2D Co3O4) was prepared in this work, for the first time, with the help of microwave radiation at 140 °C, which was further stabilized onto common test strips. The present IrO2@2D Co3O4 possessed superior dual-function enzyme-like activity with low toxicity and excellent biocompatibility. Especially, trace Fe2+ and H2O2 could exclusively alter their enzyme-like catalytic activity with discriminating hyperchromic or hypochromic effect, i.e., from blue to colorless or to dark blue for both IrO2@2D Co3O4 dispersion and its functionalized test strips. The linear regression equations were A652 = 0.5940 − 0.00041 cFe2+ (10−8 M, R2 = 0.9927) for Fe2+ and ∆A652 = 0.0023 cH2O2 + 0.00025 (10−7 M, R2 = 0.9982) for H2O2, respectively. When applied to visual monitoring of aqueous Fe2+ and intercellular H2O2, the recoveries were 101.2 ~ 102.5% and 95.8 ~ 103.7% with detection limits of 1.25 × 10−8 mol/L and 1.02 × 10−7 mol/L, respectively, far below the permitted values in drinking water set by the World Health Organization. The mechanisms for the enhancing enzyme-mimetic activity of IrO2@2D Co3O4 and its selective responses to Fe2+ and H2O2 were investigated in detail.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu P, Li Y, Yan XP (2009) CdTe quantum dots (QDs) based kinetic discrimination of Fe2+ and Fe3+, and CdTe QDs-Fenton hybrid system for sensitive photoluminescent detection of Fe2+. Anal Chem 81(15):6252–6257

    Article  CAS  Google Scholar 

  2. Yan ZQ, Zhu YJ, Xu J, Wang C, Zheng YY, Li PY (2017) A novel polydentate Schiff-base derivative developed for multi-wavelength colorimetric differentiation of trace Fe2+ from Fe3+. Anal Methods 9(44):6240–6245

    Article  CAS  Google Scholar 

  3. Wang JN, Zeng MQ, Zhao YH, Zuo XX, Meng FR, Jie HY (2022) Synergetic integration of catalase and Fe3O4 magnetic nanoparticles with metal organic framework for colorimetric detection of phenol. Environ Res 206:112580

    Article  CAS  Google Scholar 

  4. Tao Z, Si HW, Zhang XD, Liao JJ, Lin SW (2021) Highly sensitive and selective H2O2 sensors based on ZnO TFT using PBNCs/Pt-NPs/TNTAs as gate electrode. Sens Actuat B Chem 349:130791

    Article  CAS  Google Scholar 

  5. Dong YH, Zheng JB (2020) Environmentally friendly synthesis of Co-based zeolitic imidazolate framework and its application as H2O2 sensor. Chem Eng J 392:123690

    Article  CAS  Google Scholar 

  6. Han SH, Zhang H, Wang JP, Yang L, Lan MH, Wang BH (2021) Rational development of dual-ratiometric fluorescent probes for distinguishing between H2S and SO2 in living organisms. Anal Chem 93(45):15209–15215

    Article  CAS  Google Scholar 

  7. Li M, Sun Y, Dong L, Feng QC, Xu H, Zang SQ (2016) Colorimetric recognition of Cu2+ and fluorescent detection of Hg2+ in aqueous media by a dual chemosensor derived from rhodamine B dye with a NS2 receptor. Sens Actuat B Chem 226:332–341

    Article  CAS  Google Scholar 

  8. Li M, Jiang XJ, Wu HH, Lu HL, Li HY, Xu H (2015) A dual functional probe for “turn-on” fluorescence response of Pb2+ and colorimetric detection of Cu2+ based on a rhodamine derivative in aqueous media. Dalton Trans 44(39):17326–31734

    Article  CAS  Google Scholar 

  9. Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA (2019) Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 48(24):5717–5751

    Article  CAS  Google Scholar 

  10. Basiri S, Mehdinia A, Jabbari A (2018) A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe2+, hydrogen peroxide, and glucose. Colloid Surf A 545:138–146

    Article  CAS  Google Scholar 

  11. Cai XL, Jiao L, Yan HY, Wu Y, Gu WL, Du D (2021) Nanozyme-involved biomimetic cascade catalysis for biomedical applications. Mater Today 44:211–228

    Article  CAS  Google Scholar 

  12. Jiang DW, Ni DL, Rosenkrans ZT, Huang P, Yan XY, Cai WB (2019) Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev 48(14):3683–3704

    Article  CAS  Google Scholar 

  13. Wang H, Wan KW, Shi XH (2019) Recent advances in nanozyme research. Adv Mater 31(45):1805368

    Article  CAS  Google Scholar 

  14. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  15. Ruan XF, Liu D, Niu XH, Wang YJ, Simpson CD, Cheng N (2019) 2D graphene oxide/Fe-MOF nanozyme nest with superior peroxidase-like activity and its application for detection of woodsmoke exposure biomarker. Anal Chem 91(21):13847–13854

    Article  CAS  Google Scholar 

  16. Yin XL, Liu P, Xu XC, Pan JM, Li X, Niu XH (2021) Breaking the pH limitation of peroxidase-like CoFe2O4 nanozyme via vitriolization for one-step glucose detection at physiological pH. Sens Actuat B Chem 328:129033

    Article  CAS  Google Scholar 

  17. Bhattacharjee R, Tanaka S, Moriam S, Masud MK, Lin JJ, Alshehri SM (2018) Porous nanozymes: the peroxidase-mimetic activity of mesoporous iron oxide for the colorimetric and electrochemical detection of global DNA methylation. J Mater Chem B 6(29):4783–4791

    Article  CAS  Google Scholar 

  18. Ling PH, Cheng S, Chen N, Qian CH, Gao F (2020) Nanozyme-modified metal-organic frameworks with multienzymes activity as biomimetic catalysts and electrocatalytic interfaces. ACS Appl Mater Interfaces 12(15):17185–17192

    Article  CAS  Google Scholar 

  19. Ling PH, Qian CH, Yu JJ, Gao F (2020) Artificial nanozyme based on platinum nanoparticles anchored metal-organic frameworks with enhanced electrocatalytic activity for detection of telomeres activity. Biosens Bioelectron 149:111838

    Article  CAS  Google Scholar 

  20. Lai WQ, Tang DP, Zhuang JY, Chen GN, Yang HH (2014) Magnetic bead-based enzyme- chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate. Anal Chem 86(10):5061–5068

    Article  CAS  Google Scholar 

  21. Lai WQ, Wei QH, Xu MD, Zhuang JY, Tang DP (2017) Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosens Bioelectron 89:645–651

    Article  CAS  Google Scholar 

  22. Zhao Q, Gou WX, Zhang XT, Zhang MY, Bu YR, Wang LJ (2021) Hg2+-activated oxidase-like activity of Ag2S@graphene oxide nanozyme and its naked-eye monitoring Hg2+ application with obvious hyperchromic effect. Appl Surf Sci 545:148973

    Article  CAS  Google Scholar 

  23. Zhao Q, Xu XM, Xu YL, Gongsun KW, Hu L, Yan SN (2020) Synergistically improved electrochemical performance and its practical application of graphene oxide stabilized nano Ag2S by one-pot homogeneous precipitation. Appl Surf Sci 501:144208

    Article  CAS  Google Scholar 

  24. Salvatore KL, Deng KX, McGuire SC, Tan S, Rui N, Zhang LH (2021) Microwave-assisted synthesis of Cu@IrO2 core-shell nanowires for low-temperature methane conversion. ACS Appl Nano Mater 4(10):11145–11158

    Article  CAS  Google Scholar 

  25. Zhao YL, Li L, Ma R, Wang LL, Yan XC, Qi XY (2021) A competitive colorimetric aptasensor transduced by hybridization chain reaction-facilitated catalysis of AuNPs nanozyme for highly sensitive detection of saxitoxin. Anal Chim Acta 1173:338710

    Article  CAS  Google Scholar 

  26. Zheng X, Xing L, Zhou X, Tang Y, Liu Z, Zhang X (2022) A high-performance visual monitoring of trace toxic NO2- and S2- in 100% aqueous based on the superior oxidase-mimic activity of nano CeO2 strengthened by 2D Co3O4 substrate. Sens Actuat B Chem 351:130887

    Article  CAS  Google Scholar 

  27. Zhao Q, Zheng XY, Xing L, Tang YL, Zhou XM, Hu L (2021) 2D Co3O4 stabilizing Rh nano composites developed for visual sensing bioactive urea and toxic p-aminophenol in practice by synergetic-reinforcing oxidase activity. J Hazard Mater 409:125019

    Article  CAS  Google Scholar 

  28. Moser M, Mondelli C, Amrute AP, Tazawa A, Teschner D, Schuster ME (2013) HCl oxidation on IrO2-based catalysts: from fundamentals to scale-up. ACS Catal 3(12):2813–2822

    Article  CAS  Google Scholar 

  29. Xing L, Zhao Q, Zheng XY, Hui MW, Peng YL, Zhu X (2021) Porous Ag-chitosan nanoclusters bridged by cysteine residues for colorimetric sensing of ultra-trace Hg2+. ACS Appl Nano Mater 4:3639–3646

    Article  CAS  Google Scholar 

  30. Feng ZH, Pu JY, Zhang XY, Zhang WX, Liu MS, Cui L (2021) Heterostructured CoO/Co3O4 nanowire array on titanium mesh as efficient electrocatalysts for hydrogen evolution reaction. J Alloy Compd 881:160603

    Article  CAS  Google Scholar 

  31. Li W, Liu DP, Feng XL, Zhang Z, Jin X, Zhang Y (2019) High-performance ultrathin Co3O4 nanosheet supported PdO/CeO2 catalysts for methane combustion. Adv Energy Mater 9(18):1803583

    Article  Google Scholar 

  32. Zhao ZT, Huang YY, Li QG, Mei HJ, Zhu FL, Gong WP (2021) Electrochemical glucose sensitive device based on graphene supported Co3O4@Ag NWs core-shell nanostructures. Appl Surf Sci 565:150553

    Article  CAS  Google Scholar 

  33. Shao YQ, Feng KK, Zhang S, Zhang RR, He SJ, Wei XL (2021) IrO2-CeO2-graphene/Ti porous electrode with high charge-transfer speed and enhanced capacitance. Ceram Int 47(3):3728–37240

    Article  CAS  Google Scholar 

  34. Wang YB, Hou S, Ma RP, Jiang JD, Shi ZP (2021) Liu CP (2021) Modulating crystallinity and surface electronic structure of IrO2 via gadolinium doping to promote acidic oxygen evolution. Acs Sustain Chem Eng 9(32):10710–10716

    Article  CAS  Google Scholar 

  35. Cai ZY, Li AH, Zhang WX, Zhang YZ, Cui L, Liu JQ (2021) Hierarchical Cu@Co-decorated CuO@Co3O4 nanostructure on Cu foam as efficient self-supported catalyst for hydrogen evolution reaction. J Alloy Compd 882:160749

    Article  CAS  Google Scholar 

  36. Zhao SJ, Yan L, Cao MY, Huang L, Yang K, Wu SL (2021) Near-infrared light-triggered lysosome-targetable carbon dots for photothermal therapy of cancer. ACS Appl Mater Interfaces 13(45):53610–53617

    Article  CAS  Google Scholar 

  37. Arunpandiyan S, Vinoth S, Pandikumar A, Raja A, Arivarasan A (2021) Decoration of CeO2 nanoparticles on hierarchically porous MnO2 nanorods and enhancement of supercapacitor performance by redox additive electrolyte. J Alloy Compd 861:158456

    Article  CAS  Google Scholar 

  38. Xu BL, Wang H, Wang WW, Gao LZ, Li SS, Pan XT (2019) A single-atom nanozyme for wound disinfection applications. Angew Chem Int Edit 58(15):4911–4916

    Article  CAS  Google Scholar 

  39. Lian Q, Liu H, Zheng XF, Li XM, Zhang FJ, Gao J (2019) Enhanced peroxidase-like activity of CuO/Pt nanoflowers for colorimetric and ultrasensitive Hg2+ detection in water sample. Appl Surf Sci 483:551–561

    Article  CAS  Google Scholar 

  40. Tan L, Yu CF, Wang M, Zhang SY, Sun JY, Dong SY (2019) Synergistic effect of adsorption and photocatalysis of 3D g-C3N4-agar hybrid aerogels. Appl Surf Sci 467:286–292

    Article  Google Scholar 

  41. Yao JY, Wu TT, Sun Y, Ma ZY, Liu ML, Zhang YY (2019) A novel biomimetic nanoenzyme based on ferrocene derivative polymer NPs coated with polydopamine. Talanta 195:265–271

    Article  CAS  Google Scholar 

  42. Jiao L, Wu JB, Zhong H, Zhang Y, Xu WQ, Wu Y (2020) Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal 10(11):6422–6429

    Article  CAS  Google Scholar 

  43. Ming J, Zhu TB, Yang WH, Shi YR, Huang DD, Li JC (2020) Pd@Pt-GOx/HA as a novel enzymatic cascade nanoreactor for high-efficiency starving-enhanced chemodynamic cancer therapy. ACS Appl Mater Interfaces 12(46):51249–51262

    Article  CAS  Google Scholar 

  44. Lin JS, Wang Q, Wang XY, Zhu YY, Zhou X, Wei H (2020) Gold alloy-based nanozyme sensor arrays for biothiol detection. Analyst 145(11):3916–3921

    Article  CAS  Google Scholar 

  45. Yan ZQ, Zhang XZ, Bao C, Tang H, Zhao Q, Hu L (2018) A novel luminol derivative and its functionalized filter-paper for reversible double-wavelength colorimetric pH detection in fruit juice. Sens Actuat B Chem 262:869–875

    Article  CAS  Google Scholar 

  46. Shah SNA, Dou XN, Khan M, Uchiyama K, Lin JM (2019) N-doped carbon dots/H2O2 chemiluminescence system for selective detection of Fe2+ ion in environmental samples. Talanta 196:370–375

    Article  CAS  Google Scholar 

  47. Miao H, Shen RQ, Zhang WH, Lin ZF, Wang H, Yang LK (2021) Near-infrared light triggered silk fibroin scaffold for photothermal therapy and tissue repair of bone tumors. Adv Funct Mater 1(10):2007188

    Article  Google Scholar 

  48. Jiao L, Xu WQ, Yan HY, Wu Y, Liu CR, Du D (2019) Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal Chem 91(18):11994–11999

    Article  CAS  Google Scholar 

  49. Guo CX, Zheng XT, Lu ZS, Lou XW, Li CM (2010) Biointerface by cell growth on layered graphene-artificial peroxidase-protein nanostructure for in situ quantitative molecular detection. Adv Mater 22(45):5164–5167

    Article  CAS  Google Scholar 

  50. Lian ML, Chen X, Lu YL, Yang WS (2016) Self-assembled peptide hydrogel as a smart biointerface for enzyme-based electrochemical biosensing and cell monitoring. ACS Appl Mater Interfaces 8(38):25036–25042

    Article  CAS  Google Scholar 

  51. Chen XH, Liang R, Qin C, Ye ZZ, Zhu LP (2022) Coaxial electrospinning Fe2O3@Co3O4 double-shelled nanotubes for enhanced ethanol sensing performance in a wide humidity range. J Alloy Compd 891:161868

    Article  CAS  Google Scholar 

  52. Chicea D, Indrea E, Cretu CM (2012) Assesing Fe3O4 nanoparticle size by DLS, XRD and AFM. J Optoelectron Adv Mater 14(5–6):460–466

    CAS  Google Scholar 

  53. Tang JH, Wang H, Wang XX, Xie CS, Zeng DW (2022) Prussian blue-derived hollow cubic alpha-Fe2O3 for highly sensitive room temperature detection of H2S. Sens Actuat B Chem 351:130954

    Article  CAS  Google Scholar 

  54. Wang HL, Jin BF, Wang HB, Ma NN, Liu W (2018) Weng D (2018) Study of Ag promoted Fe2O3@CeO2 as superior soot oxidation catalysts: the role of Fe2O3 crystal plane and tandem oxygen delivery. Appl Catal B Environ 237:251–262

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos.: 22276108, 51773171, 12074322, and 21806089) and Natural Science Foundation of Shandong Province (Nos.: ZR2021MB002 and ZR2018MB038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengquan Yan, Naibo Lin or Lei Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1813 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Zheng, X., Meng, G. et al. 2D Co3O4 modified by IrO2 nanozyme for convenient detection of aqueous Fe2+ and intercellular H2O2. Microchim Acta 190, 1 (2023). https://doi.org/10.1007/s00604-022-05582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05582-1

Keywords

Navigation