Skip to main content
Log in

Reduced graphene oxide quenched peptide probe for caspase-8 activity detection and cellular imaging

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Cysteinyl aspartate-specific protease 8 (caspase-8) plays a key role in various biological processes by regulating apoptosis. Therefore, this makes accurate detection and intracellular imaging of caspase-8 of great importance for drug screening, disease diagnosis, and prognostication. Here, by designing a reduced graphene oxide (rGO) quenched peptide probe, we constructed a new biosensing system for monitoring in vitro and intracellular caspase-8 activity. In this system, a fluorophore-labeled peptide and rGO were used as the substrate of caspase-8 and the fluorophore quencher, respectively. The hydrolysis of caspase-8 on the polypeptide probe substrate can generate two fragments with different lengths. The release of the short fragment labeled with the fluorophore causes recovery of the fluorescence signal (Ex/Em = 520/576 nm). Under the optimized conditions, the proposed fluorescence method exhibited a linear response range of 0.2 to 5 U·mL−1 for caspase-8 with a limit of detection (LOD) of 0.2 U·mL−1 in vitro. Furthermore, this method has been successfully applied to monitoring the upregulation of intracellular caspase-8 activity caused by tert-butyl hydroperoxide (TBHP) and fluorouracil. Flow cytometry assay indicated the positive relation between the upregulation of intracellular caspase-8 activity and cell apoptosis rate. In summary, the above results demonstrated the practical application of this method for apoptosis-related cell imaging.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng X, Ferrell JJ (2018) Apoptosis propagates through the cytoplasm as trigger waves. Science 361(6402):607–612

    Article  CAS  Google Scholar 

  2. Jost PJ, Grabow S, Gray D et al (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460(7258):1035–1039

    Article  CAS  Google Scholar 

  3. Fritsch M, Gunther SD, Schwarzer R et al (2019) Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575(7784):683–687

    Article  CAS  Google Scholar 

  4. Newton K, Wickliffe KE, Dugger DL et al (2019) Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574(7778):428–431

    Article  CAS  Google Scholar 

  5. Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17(7):395–417

    Article  Google Scholar 

  6. Wang H, Yu Q, Zhang Z et al (2020) Involvement of the miR-137-3p/CAPN-2 interaction in ischemia-reperfusion-induced neuronal apoptosis through modulation of p35 cleavage and subsequent caspase-8 overactivation. Oxid Med Cell Longev 2020:2616871

    Article  Google Scholar 

  7. Boege Y, Malehmir M, Healy ME et al (2017) A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development. Cancer Cell 32(3):342–359

    Article  CAS  Google Scholar 

  8. Benkova B, Lozanov V, Ivanov IP et al (2009) Evaluation of recombinant caspase specificity by competitive substrates. Anal Biochem 394(1):68–74

    Article  CAS  Google Scholar 

  9. Su J, Rajapaksha TW, Peter ME et al (2006) Assays of endogenous caspase activities: a comparison of mass spectrometry and fluorescence format. Anal Chem 78(14):4945–4951

    Article  CAS  Google Scholar 

  10. den Hamer A, Dierickx P, Arts R et al (2017) Bright bioluminescent BRET sensor proteins for measuring intracellular caspase activity. ACS Sens 2(6):729–734

    Article  Google Scholar 

  11. Zeng Y, Du Q, Zhang Z et al (2020) Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress. Arch Biochem Biophys 694:108613

    Article  CAS  Google Scholar 

  12. Corbat AA, Schuermann KC, Liguzinski P et al (2018) Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy. Redox Biol 19:210–217

    Article  CAS  Google Scholar 

  13. Zhu W, Wang C, Hu J et al (2021) Promoted “Click” SERS detection for precise intracellular imaging of caspase-3. Anal Chem 93(11):4876–4883

    Article  CAS  Google Scholar 

  14. Zhou H, Luo R, Xie Q et al (2021) A new fluorescence method for monitoring PNK activity in vitro, natural compounds screening and intracellular imaging. Sens Actuators B 329:129203

    Article  CAS  Google Scholar 

  15. Tong C, Zhou T, Zhao C et al (2019) Fluorometric determination of RNase H via a DNAzyme conjugated to reduced graphene oxide, and its application to screening for inhibitors and activators. Microchim Acta 186(6):335

    Article  Google Scholar 

  16. Qiu Y, Dang W, Fan J et al (2020) DNAzyme and rGO based fluorescence assay for Fpg activity analysis, drug screening, and bacterial imaging. Talanta 218:121158

    Article  CAS  Google Scholar 

  17. Liu M, Zhang D, Zhang X et al (2020) Label-free and amplified detection of apoptosis-associated caspase activity using branched rolling circle amplification. Chem Commun 56(39):5243–5246

    Article  CAS  Google Scholar 

  18. Liu X, Song X, Luan D et al (2019) Real-time in situ visualizing of the sequential activation of caspase cascade using a multicolor gold–selenium bonding fluorescent nanoprobe. Anal Chem 91(9):5994–6002

    Article  CAS  Google Scholar 

  19. Kwon OS, Song HS, Park TH et al (2019) Conducting nanomaterial sensor using natural receptors. Chem Rev 119(1):36–93

    Article  CAS  Google Scholar 

  20. Tong C, Zhao C, Liu B et al (2018) Sensitive detection of RNase A activity and collaborative drug screening based on rGO and fluorescence probe. Anal Chem 90(4):2655–2661

    Article  CAS  Google Scholar 

  21. Luo R, Zhou H, Dang W et al (2020) A DNAzyme-rGO coupled fluorescence assay for T4PNK activity in vitro and intracellular imaging. Sens Actuators B 310:127884

    Article  CAS  Google Scholar 

  22. Dang W, Liu H, Fan J et al (2019) Monitoring VEGF mRNA and imaging in living cells in vitro using rGO-based dual fluorescent signal amplification platform. Talanta 205:120092

    Article  CAS  Google Scholar 

  23. Qin Y, Fan J, Yang W et al (2020) Endogenous Cys-assisted GSH@AgNCs-rGO nanoprobe for real-time monitoring of dynamic change in GSH levels regulated by natural drug. Anal Chem 92(2):1988–1996

    Article  CAS  Google Scholar 

  24. Blanchard H, Donepudi M, Tschopp M et al (2000) Caspase-8 specificity probed at subsite S(4): crystal structure of the caspase-8-Z-DEVD-cho complex. J Mol Biol 302(1):9–16

    Article  CAS  Google Scholar 

  25. Xie Y, Zhao R, Tan Y et al (2012) Conjugated polymer-based real-time fluorescence caspase assays. ACS Appl Mater Interfaces 4(1):405–410

    Article  CAS  Google Scholar 

  26. Liu W, Liu S, Kuang Y et al (2016) Developing activity localization fluorescence peptide probe using thiol-ene click reaction for spatially resolved imaging of caspase-8 in live cells. Anal Chem 88(15):7867–7872

    Article  CAS  Google Scholar 

  27. Zhang L, Xu H, Xia Y et al (2021) Real-time monitoring of caspase-3/8 activity by self-assembling nanofiber probes in living cells. Chem Commun 57(6):797–800

    Article  CAS  Google Scholar 

  28. Yuan Y, Zhang C, Kwok R et al (2017) Light-up probe based on AIEgens: dual signal turn-on for caspase cascade activation monitoring. Chem Sci 8:2723–2728

    Article  CAS  Google Scholar 

  29. Pirnia F, Schneider E, Betticher D et al (2002) Mitomycin C induces apoptosis and caspase-8 and -9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ 9(9):905–914

    Article  CAS  Google Scholar 

  30. Zhou T, Luo R, Li Y et al (2020) Activity assay and intracellular imaging of APE1 assisted with tetrahedral DNA nanostructure modified-dnazyme and molecular beacon. Sens Actuators B 317:128203

    Article  CAS  Google Scholar 

  31. Xiao X, Guo M, Li Q et al (2008) In-situ monitoring of breast cancer cell (MCF-7) growth and quantification of the cytotoxicity of anticancer drugs fluorouracil and cisplatin. Biosens Bioelectron 24(2):247–252

    Article  CAS  Google Scholar 

  32. Fedoreyeva L, Kireev I, Khavinson V et al (2011) Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry Moscow 76:1210–1219

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the Natural Science Foundation of Hunan Province (2021JJ30164), the National Standardization Project of Traditional Chinese Medicine (ZYBZH-Y-HUN-23), Key Research and Development Program of Hainan Province (ZDYF2022SHFS075), Science and Technology Innovation Leading Plan for High-tech Industry of Hunan Province (2020SK2043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyi Tong or Bin Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, X., Zou, W., Qin, Y. et al. Reduced graphene oxide quenched peptide probe for caspase-8 activity detection and cellular imaging. Microchim Acta 189, 463 (2022). https://doi.org/10.1007/s00604-022-05567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05567-0

Keywords

Navigation