Skip to main content
Log in

Photoelectrochemical aptasensor based on nanocomposite of CdSe@SnS2 for ultrasensitive and selective detection of sulfamethazine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photoelectrochemical (PEC) aptasensor based on CdSe@SnS2 nanocomposite has been developed to detect sulfamethazine (SMZ). The introduction of CdSe into SnS2 displayed an amplified PEC signal, which was higher than that of pure CdSe and SnS2, attributable to its enhanced light harvesting capacity and promoted PEC energy conversion efficiency. Due to the formation of specific non-covalent bonds, the SMZ-binding aptamer (SBA) has significant specificity and sensitivity. When SMZ was incubated on a CdSe@SnS2 modified electrode fixed with aminated SBA, the formation of the SMZ/SBA complex increased the space resistance of electron transfer and hindered the electronic migration between the electrodes, resulting in a decrease in photocurrent. The greater the adsorbed amount on the SBA, the lower the photocurrent produced.  Under optimized conditions the photocurrent response of MCH/SBA/CdSe@SnS2/FTO was inversely proportional to the SMZ concentration in the range 0.1 to 100 pM, with a detection limit (3 S/N) of 0.025 pM (at 0 V vs. Hg/HgCl). The recoveries ranged from 95.8 to 104% with relative standard deviations (RSDs) < 6.3% (n = 3) in actual water sample. This PEC aptasensor which shows considerable potential in SMZ detection applications has high selectivity, reproducibility, and good stability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu C, Liu D, Li Y, Shen X, Li L, Liu Y, You T (2019) Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection. Curr Opin Electroche 17:47–55. https://doi.org/10.1016/j.coelec.2019.04.014

    Article  CAS  Google Scholar 

  2. Tu W, Wang Z, Dai Z (2018) Selective photoelectrochemical architectures for biosensing: design, mechanism and responsibility. Trend Anal Chem 105:470–483. https://doi.org/10.1016/j.trac.2018.06.007

    Article  CAS  Google Scholar 

  3. Zang Y, Lei J, Ju H (2017) Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 96:8–16. https://doi.org/10.1016/j.bios.2017.04.030

    Article  CAS  Google Scholar 

  4. Zang Y, Cao R, Zhang C, Xu Q, Yang Z, Xue H, Shen Y (2021) TiO2-sensitized double-shell ZnCdS hollow nanospheres for photoelectrochemical immunoassay of carcinoembryonic antigen coupled with hybridization chain reaction-dependent Cu2+ quenching. Biosens Bioelectron 185:113251. https://doi.org/10.1016/j.bios.2021.113251

    Article  CAS  Google Scholar 

  5. Yang Y, Yan W, Wang X, Yu L, Zhang J, Bai B, Guo C, Fan S (2021) Development of a molecularly imprinted photoelectrochemical sensing platform based on NH2-MIL-125(Ti)–TiO2 composite for the sensitive and selective determination of oxtetracycline. Biosens Bioelectron 177:113000. https://doi.org/10.1016/j.bios.2021.113000

    Article  CAS  Google Scholar 

  6. Yu Z, Gong H, Li Y, Xu J, Zhang J, Zeng Y, Liu X, Tang D (2021) Chemiluminescence-derived self-powered photoelectrochemical immunoassay for detecting a low-abundance disease-related protein. Anal Chem 93:13389–13397. https://doi.org/10.1021/acs.analchem.1c03344

    Article  CAS  Google Scholar 

  7. Long D, Li M, Wang H, Wang H, Chai Y, Li Z, Yuan R (2020) Ultrasensitive photoelectrochemical assay for DNA detection based on a novel SnS2/Co3O4 sensitized structure. Anal Chem 92:14769–14774. https://doi.org/10.1021/acs.analchem.0c03497

    Article  CAS  Google Scholar 

  8. Huang R, Xi Z, He N (2015) Applications of aptamers for chemistry analysis, medicine and food security. Sci China Chem 58:1122–1130. https://doi.org/10.1007/s11426-015-5344-7

    Article  CAS  Google Scholar 

  9. Hu L, Fong C-C, Zhang X, Chan LL, Lam PKS, Chu PK, Wong K-Y, Yang M (2016) Au nanoparticles decorated TiO2 nanotube arrays as a recyclable sensor for photoenhanced electrochemical detection of bisphenol A. Environ Sci Technol 50:4430–4438. https://doi.org/10.1021/acs.est.5b05857

    Article  CAS  Google Scholar 

  10. Zhang B, Lu L, Hu Q, Huang F, Lin Z (2014) ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+. Biosens Bioelectron 56:243–249. https://doi.org/10.1016/j.bios.2014.01.026

    Article  CAS  Google Scholar 

  11. Zhou X, Hu X, Zhou S, Song H, Zhang Q, Pi L, Li L, Li H, Lü J, Zhai T (2018) Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv Mater 30:1703286. https://doi.org/10.1002/adma.201703286

    Article  CAS  Google Scholar 

  12. Wang Y, Fan D, Zhao G, Feng J, Wei D, Zhang N, Cao W, Du B, Wei Q (2018) Ultrasensitive photoelectrochemical immunosensor for the detection of amyloid β-protein based on SnO2/SnS2/Ag2S nanocomposites. Biosens Bioelectron 120:1–7. https://doi.org/10.1016/j.bios.2018.08.026

    Article  CAS  Google Scholar 

  13. Zuo Y, Liu Y, Li J, Du R, Yu X, Xing C, Zhang T, Yao L, Arbiol J, Llorca J, Sivula K, Guijarro N, Cabot A (2019) Solution-processed ultrathin SnS2–Pt nanoplates for photoelectrochemical water oxidation. ACS Appl Mater Inter 11:6918–6926. https://doi.org/10.1021/acsami.8b17622

    Article  CAS  Google Scholar 

  14. Kočí K, Reli M, Troppová I, Šihor M, Kupková J, Kustrowski P, Praus P (2017) Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction. Appl Surf Sci 396:1685–1695. https://doi.org/10.1016/j.apsusc.2016.11.242

    Article  CAS  Google Scholar 

  15. Jun HK, Careem MA, Arof AK (2013) Quantum dot-sensitized solar cells—perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew Sust Energ Rev 22:148–167. https://doi.org/10.1016/j.rser.2013.01.030

    Article  CAS  Google Scholar 

  16. Khan AH, Bertrand GHV, Teitelboim A, Sekhar MC, Polovitsyn A, Brescia R, Planelles J, Climente JI, Oron D, Moreels I (2020) CdSe/CdS/CdTe core/barrier/crown nanoplatelets: synthesis, optoelectronic properties, and multiphoton fluorescence upconversion. ACS Nano 14:4206–4215. https://doi.org/10.1021/acsnano.9b09147

    Article  CAS  Google Scholar 

  17. Fan Y, Ji Y, Kong D, Lu J, Zhou Q (2015) Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J Hazard Mater 300:39–47. https://doi.org/10.1016/j.jhazmat.2015.06.058

    Article  CAS  Google Scholar 

  18. Doretto KM, Peruchi LM, Rath S (2014) Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Sci Total Environ 476–477:406–414. https://doi.org/10.1016/j.scitotenv.2014.01.024

    Article  CAS  Google Scholar 

  19. Kivits T, Broers HP, Beeltje H, van Vliet M, Griffioen J (2018) Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environ Pollut 241:988–998. https://doi.org/10.1016/j.envpol.2018.05.085

    Article  CAS  Google Scholar 

  20. Wei R, Ge F, Huang S, Chen M, Wang R (2011) Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere 82:1408–1414. https://doi.org/10.1016/j.chemosphere.2010.11.067

    Article  CAS  Google Scholar 

  21. Li T, Shi Z-G, Zheng M-M, Feng Y-Q (2008) Multiresidue determination of sulfonamides in chicken meat by polymer monolith microextraction and capillary zone electrophoresis with field-amplified sample stacking. J Chromatogr A 1205:163–170. https://doi.org/10.1016/j.chroma.2008.08.017

    Article  CAS  Google Scholar 

  22. Fang B, Hu S, Wang C, Yuan M, Huang Z, Xing K, Liu D, Peng J, Lai W (2019) Lateral flow immunoassays combining enrichment and colorimetry-fluorescence quantitative detection of sulfamethazine in milk based on trifunctional magnetic nanobeads. Food Control 98:268–273. https://doi.org/10.1016/j.foodcont.2018.11.039

    Article  CAS  Google Scholar 

  23. Yang L, Ni H, Li C, Zhang X, Wen K, Ke Y, Yang H, Shi W, Zhang S, Shen J, Wang Z (2019) Development of a highly specific chemiluminescence aptasensor for sulfamethazine detection in milk based on in vitro selected aptamers. Sens Actuators B 281:801–811. https://doi.org/10.1016/j.snb.2018.10.143

    Article  CAS  Google Scholar 

  24. Wang Q, Zhou M, Zhang L (2020) A dual mode photoelectrochemical sensor for nitrobenzene and L-cysteine based on 3D flower-like Cu2SnS3@SnS2 double interfacial heterojunction photoelectrode. J Hazard Mater 382:121026. https://doi.org/10.1016/j.jhazmat.2019.121026

    Article  CAS  Google Scholar 

  25. Yan K, Wang R, Zhang J (2014) A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode. Biosens Bioelectron 53:301–304. https://doi.org/10.1016/j.bios.2013.09.073

    Article  CAS  Google Scholar 

  26. Wang Y, Feng J, Tan Z, Wang H (2014) Electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of adenosine with dual backfillers. Biosens Bioelectron 60:218–223. https://doi.org/10.1016/j.bios.2014.04.022

    Article  CAS  Google Scholar 

  27. Chen X, Zhang J, Zeng J, Shi Y, Huang G, Zhang L, Wang H, Kong Z, Xi J, Ji Z (2019) Novel 3D/2D heterojunction photocatalysts constructed by three-dimensional In2S3 dandelions and ultrathin hexagonal SnS2 nanosheets with excellent photocatalytic and photoelectrochemical activities. Appl Surf Sci 463:693–703. https://doi.org/10.1016/j.apsusc.2018.09.013

    Article  CAS  Google Scholar 

  28. Fakhri A, Behrouz S, Pourmand M (2015) Synthesis, photocatalytic and antimicrobial properties of SnO2, SnS2 and SnO2/SnS2 nanostructure. J Photoch Photobio B 149:45–50. https://doi.org/10.1016/j.jphotobiol.2015.05.017

    Article  CAS  Google Scholar 

  29. Li Z-J, Fan X-B, Li X-B, Li J-X, Zhan F, Tao Y, Zhang X, Kong Q-Y, Zhao N-J, Zhang J-P, Ye C, Gao Y-J, Wang X-Z, Meng Q-Y, Feng K, Chen B, Tung C-H, Wu L-Z (2017) Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. J Mater Chem A 5:10365–10373. https://doi.org/10.1039/C7TA01670K

    Article  CAS  Google Scholar 

  30. Li H, He YY, Dai YX, Ren YQ, Gao TT, Zhou GW (2022) Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries. Chem Eng J 427. https://doi.org/10.1016/j.cej.2021.131784

  31. Deng L, Liu H, Gao X, Su X, Zhu Z (2016) SnS2/TiO2 nanocomposites with enhanced visible light-driven photoreduction of aqueous Cr(VI). Ceram Int 42:3808–3815. https://doi.org/10.1016/j.ceramint.2015.11.043

    Article  CAS  Google Scholar 

  32. Di T, Zhu B, Cheng B, Yu J, Xu J (2017) A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J Catal 352:532–541. https://doi.org/10.1016/j.jcat.2017.06.006

    Article  CAS  Google Scholar 

  33. Kumar A, Gupta K (2017) RNA-mediated fluorescent colloidal CdSe nanostructures in aqueous medium – analysis of Cd2+ induced folding of RNA associated with morphological transformation (0D to 1D), change in photophysics and selective Hg2+ sensing. J Mater Chem A 5:6146–6163. https://doi.org/10.1039/C6TA10795H

    Article  CAS  Google Scholar 

  34. Jia F, Liu D, Dong N, Li Y, Meng S, You T (2021) Interaction between the functionalized probes: The depressed efficiency of dual-amplification strategy on ratiometric electrochemical aptasensor for aflatoxin B1. Biosens Bioelectron 182:113169. https://doi.org/10.1016/j.bios.2021.113169

    Article  CAS  Google Scholar 

  35. Abnous K, Danesh NM, Alibolandi M, Ramezani M, Taghdisi SM, Emrani AS (2017) A novel electrochemical aptasensor for ultrasensitive detection of fluoroquinolones based on single-stranded DNA-binding protein. Sens Actuators B 240:100–106. https://doi.org/10.1016/j.snb.2016.08.100

    Article  CAS  Google Scholar 

  36. Xu F, Bai D, Han S, Wu D, Gao Z, Jiang K (2014) One-pot synthesis of graphene–ZnxCd1−xS QDs composites with improved photoelectrochemical performance for selective determination of Cu2+. Sens Actuators B 203:89–94. https://doi.org/10.1016/j.snb.2014.06.059

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21905046, 52002068), the Natural Science Foundations of Guangdong Province (No. 2019A1515110315), the Guangdong Provincial Key Platform and Major Scientific Research Projects for Colleges and Universities (No. 2020KTSCX151), the Guangdong Provincial Key Construction Discipline Research Capacity Enhancement Project (No. 2021ZDJS088), and the Dongguan Science and Technology Commissioner Project (No. 20201800500172).

Author information

Authors and Affiliations

Authors

Contributions

Wenping Liu: methodology, conceptualization, formal analysis, investigation, data curation, writing—original draft. Min Zhang: validation, writing—review & editing, project administration. Lu’an Guo: conceptualization, writing—review & editing. Kefu Peng: formal analysis, investigation. Zu Man: data curation. Shilei Xie: formal analysis. Peng Liu: resources. Dong Xie: funding acquisition. Shoushan Wang: project administration. Faliang Cheng: supervision, funding acquisition.

Corresponding authors

Correspondence to Min Zhang or Faliang Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 845 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, M., Guo, L. et al. Photoelectrochemical aptasensor based on nanocomposite of CdSe@SnS2 for ultrasensitive and selective detection of sulfamethazine. Microchim Acta 189, 453 (2022). https://doi.org/10.1007/s00604-022-05565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05565-2

Keywords

Navigation