Skip to main content
Log in

A sensitive multimode dot-filtration strip for the detection of Salmonella typhimurium using MoS2@Fe3O4

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive, accurate, and rapid multimode dot-filtration immunoassay (MDFIA) was established for the detection of Salmonella typhimurium using the intrinsic color, catalytic property, and photothermal effect of magnetic molybdenum disulphide (MoS2@Fe3O4). The critical performance parameters of MDFIA were optimized in detail. The sensitivity of MDFIA can be improved by the catalytic color development and photothermal conversion of MoS2@Fe3O4 with a limit of detection (LOD) of 101 CFU·mL−1, which is an order of magnitude lower than direct visual detection (102 CFU·mL−1). Besides, the magnetic property of MoS2@Fe3O4 was used for the rapid enrichment and separation of the target allowing detection of trace concentrations of Salmonella typhimurium. The selectivity and applicability of the MDFIA were verified in spiked samples, indicating that the established assay may have bright application prospects for the detection and control of foodborne pathogens.

Graphical abstract

A multimode dot-filtration immunoassay was constructed for Salmonella typhimurium rapid detection based on the peroxidase-like activity, magnetic property, and photothermal effect of MoS2@Fe3O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MoS2@Fe3O4 :

Magnetic molybdenum disulphide nanoparticles

MDFIA:

Multimode dot-filtration immunoassay

ELISA:

Enzyme-linked immunosorbent assay

IFTS:

Immunofiltration test strips

POCT:

Point-of-care testing

SPR:

Surface plasmon resonance

L-Cys:

L-Cysteine

BSA:

Bovine serum albumin

NCM:

Nitrocellulose membrane

ΔT :

Temperature change value

TMB:

3,3′,5,5′-Tetramethylbenzidine

PBS:

Phosphate buffer solution

MoS2@Fe3O4-L-Cys:

MoS2@Fe3O4 modified with L-Cysteine

DLS:

Dynamic light scattering

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

NIR:

Near-infrared

K m :

Michaelis-Menten constant

LOD:

Limit of detection

CV:

Coefficient of variation

References

  1. Tack DM, Ray L, Griffin PM, Cieslak PR, Dunn J, Rissman T, Jervis R, Lathrop S, Muse A, Duwell M, Smith K, Tobin-D’Angelo M, Vugia DJ, Zablotsky KJ, Wolpert BJ, Tauxe R, Payne DC (2020) Preliminary incidence and trends of infections with pathogens transmitted commonly through food - foodborne diseases active surveillance network, 10 U.S. Sites, 2016–2019. MMWR Morb Mortal Wkly Rep 69:509–514. https://doi.org/10.15585/mmwr.mm6917a1

    Article  Google Scholar 

  2. Khan S, McWhorter AR, Moyle TS, Chousalkar KK (2021) Refrigeration of eggs influences the virulence of Salmonella typhimurium. Sci Rep 11:18026. https://doi.org/10.1038/s41598-021-97135-4

    Article  CAS  Google Scholar 

  3. Pancza B, Szathmáry M, Gyurján I, Bánkuti B, Tudós Z, Szathmary S, Stipkovits L, Sipos-Kozma Z, Ásványi B, Varga L, Szenthe K, Bánáti F (2021) A rapid and efficient DNA isolation method for qPCR-based detection of pathogenic and spoilage bacteria in milk. Food Control 130:108236. https://doi.org/10.1016/j.foodcont.2021.108236

    Article  CAS  Google Scholar 

  4. Hou Y, Tang W, Qi W, Guo X, Lin J (2020) An ultrasensitive biosensor for fast detection of Salmonella using 3D magnetic grid separation and urease catalysis. Biosens Bioelectron 157:112160. https://doi.org/10.1016/j.bios.2020.112160

    Article  CAS  Google Scholar 

  5. Ma M, Zhao J, Yan X, Zeng Z, Wan D, Yu P, Xia J, Zhang G, Gong D (2022) Synergistic effects of monocaprin and carvacrol against Escherichia coli O157:H7 and Salmonella typhimurium in chicken meat preservation. Food Control 132:108480. https://doi.org/10.1016/j.foodcont.2021.108480

    Article  CAS  Google Scholar 

  6. Aaliya B, ValiyapeediyekkalSunooj K, Navaf M, ParambilAkhila P, Sudheesh C, Ahmad Mir S, Sabu S, Sasidharan A, TheingiHlaing M, George J (2021) Recent trends in bacterial decontamination of food products by hurdle technology: a synergistic approach using thermal and non-thermal processing techniques. Food Res Int 147:110514. https://doi.org/10.1016/j.foodres.2021.110514

    Article  CAS  Google Scholar 

  7. Skenderidis P, Leontopoulos S, Petrotos K, Mitsagga C, Giavasis I (2021) The in vitro and in vivo synergistic antimicrobial activity assessment of vacuum microwave assisted aqueous extracts from pomegranate and avocado fruit peels and avocado seeds based on a mixtures design model. Plants 10:1757. https://doi.org/10.3390/plants10091757

    Article  CAS  Google Scholar 

  8. Adam AM, Yadav B, Prasad A, Gautam B, Tsui Y, Roopesh MS (2021) Salmonella inactivation and rapid cooling of fresh cut apples by plasma integrated low-pressure cooling. Food Res Int 147:110464. https://doi.org/10.1016/j.foodres.2021.110464

    Article  CAS  Google Scholar 

  9. Song H, Ku K (2021) Optimization of allyl isothiocyanate sanitizing concentration for inactivation of Salmonella typhimurium on lettuce based on its phenotypic and metabolome changes. Food Chem 364:130438. https://doi.org/10.1016/j.foodchem.2021.130438

    Article  CAS  Google Scholar 

  10. Man Y, Ban M, Li A, Jin X, Du Y, Pan L (2021) A microfluidic colorimetric biosensor for in-field detection of Salmonella in fresh-cut vegetables using thiolated polystyrene microspheres, hose-based microvalve and smartphone imaging APP. Food Chem 354:129578. https://doi.org/10.1016/j.foodchem.2021.129578

    Article  CAS  Google Scholar 

  11. Zhang Y, Ren F, Wang G, Liao T, Hao Y, Zhang H (2021) Rapid and sensitive pathogen detection platform based on a lanthanide-labeled immunochromatographic strip test combined with immunomagnetic separation. Sensor Actuat B Chem 329:129273. https://doi.org/10.1016/j.snb.2020.129273

    Article  CAS  Google Scholar 

  12. Qi W, Zheng L, Wang S, Huang F, Liu Y, Jiang H, Lin J (2021) A microfluidic biosensor for rapid and automatic detection of Salmonella using metal-organic framework and Raspberry Pi. Biosens Bioelectron 178:113020. https://doi.org/10.1016/j.bios.2021.113020

    Article  CAS  Google Scholar 

  13. Srisa-Art M, Boehle KE, Geiss BJ, Henry CS (2017) Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation. Anal Chem 90:1035–1043. https://doi.org/10.1021/acs.analchem.7b04628

    Article  CAS  Google Scholar 

  14. Zhang Q, Yang P, Zhang H, Zhao J, Shi H, Huang Y, Yang H (2022) Oxygen vacancies in Co3O4 promote CO2 photoreduction. Appl Catal B 300:120729. https://doi.org/10.1016/j.apcatb.2021.120729

    Article  CAS  Google Scholar 

  15. Du S, Wang Y, Liu Z, Xu Z, Zhang H (2019) A portable immune-thermometer assay based on the photothermal effect of graphene oxides for the rapid detection of Salmonella typhimurium. Biosens Bioelectron 144:111670. https://doi.org/10.1016/j.bios.2019.111670

    Article  CAS  Google Scholar 

  16. Nguyen V, Song S, Park S, Joo C (2020) Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens Bioelectron 152:112015. https://doi.org/10.1016/j.bios.2020.112015

    Article  CAS  Google Scholar 

  17. Cui K, Zhou C, Zhang B, Zhang L, Liu Y, Hao S, Tang X, Huang Y, Yu J (2021) Enhanced catalytic activity induced by the nanostructuring effect in Pd decoration onto doped ceria enabling an origami paper analytical device for high performance of amyloid-β bioassay. ACS Appl Mater Interfaces 13:33937–33947. https://doi.org/10.1021/acsami.1c09760

    Article  CAS  Google Scholar 

  18. Zhang D, Du S, Su S, Wang Y, Zhang H (2019) Rapid detection method and portable device based on the photothermal effect of gold nanoparticles. Biosens Bioelectron 123:19–24. https://doi.org/10.1016/j.bios.2018.09.039

    Article  CAS  Google Scholar 

  19. Dong H, Liu S, Liu Q, Li Y, Li Y, Zhao Z (2022) A dual-signal output electrochemical immunosensor based on Au–MoS2/MOF catalytic cycle amplification strategy for neuron-specific enolase ultrasensitive detection. Biosens Bioelectron 195:113648. https://doi.org/10.1016/j.bios.2021.113648

    Article  CAS  Google Scholar 

  20. Gao L, Zhuang J, Perrett S, Yan X, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  Google Scholar 

  21. Kaushik S, Tiwari UK, Pal SS, Sinha RK (2019) Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets. Biosens Bioelectron 126:501–509. https://doi.org/10.1016/j.bios.2018.11.006

    Article  CAS  Google Scholar 

  22. Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XWD, Xie Y (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25:5807–5813. https://doi.org/10.1002/adma.201302685

    Article  CAS  Google Scholar 

  23. Du S, Lu Z, Gao L, Ge Y, Xu X, Zhang H (2020) Salmonella typhimurium detector based on the intrinsic peroxidase-like activity and photothermal effect of MoS2. Microchim Acta 187:627. https://doi.org/10.1007/s00604-020-04600-4

    Article  CAS  Google Scholar 

  24. Lu L, Ge Y, Wang X, Lu Z, Wang T, Zhang H, Du S (2021) Rapid and sensitive multimode detection of Salmonella typhimurium based on the photothermal effect and peroxidase-like activity of MoS2@Au nanocomposite. Sensor Actuat B Chem 326:128807. https://doi.org/10.1016/j.snb.2020.128807

    Article  CAS  Google Scholar 

  25. He L, He F, Feng Y, Wang X, Li Y, Tian Y, Gao A, Zhang P, Qi X, Luo Z, Duan Y (2021) Hybridized nanolayer modified Ω-shaped fiber-optic synergistically enhances localized surface plasma resonance for ultrasensitive cytosensor and efficient photothermal therapy. Biosens Bioelectron 194:113599. https://doi.org/10.1016/j.bios.2021.113599

    Article  CAS  Google Scholar 

  26. Shao Q, Lu F, Yu L, Xu X, Huang X, Huang Y, Hu Z (2021) Facile immobilization of graphene nanosheets onto PBO fibers via MOF-mediated coagulation strategy: Multifunctional interface with self-healing and ultraviolet-resistance performance. J Colloid Interf Sci 587:661–671. https://doi.org/10.1016/j.jcis.2020.11.026

    Article  CAS  Google Scholar 

  27. Jeon M, Kim G, Lee W, Baek S, Jung HN, Im H (2021) Development of theranostic dual-layered Au-liposome for effective tumor targeting and photothermal therapy. J Nanobiotechnol 19:262. https://doi.org/10.1186/s12951-021-01010-3

    Article  CAS  Google Scholar 

  28. Chen Z, Feng Y, Zhao N, Liu Y, Liu G, Zhou F, Liu W (2021) Near-infrared-light-modulated lubricating coating enabled by photothermal microgels. ACS Appl Mater Interfaces 13:49322–49330. https://doi.org/10.1021/acsami.1c14646

    Article  CAS  Google Scholar 

  29. Liu J, Zheng J, Nie H, Chen H, Li B, Jia L (2020) Co-delivery of erlotinib and doxorubicin by MoS2 nanosheets for synergetic photothermal chemotherapy of cancer. Chem Eng J 381:122541. https://doi.org/10.1016/j.cej.2019.122541

    Article  CAS  Google Scholar 

  30. Jiang H, Xing Z, Zhao T, Yang Z, Wang K, Li Z, Yang S, Xie L, Zhou W (2020) Plasmon Ag nanoparticle/Bi2S3 ultrathin nanobelt/oxygen-doped flower-like MoS2 nanosphere ternary heterojunctions for promoting charge separation and enhancing solar-driven photothermal and photocatalytic performances. Appl Catal B 274:118947. https://doi.org/10.1016/j.apcatb.2020.118947

    Article  CAS  Google Scholar 

  31. Yang J, Zhang C, Chun Y, Li J, Wang X, Zhang J (2020) Preparation of magnetic Fe3O4 nanoparticles. Fine Chem Intermed 50:50–53. https://doi.org/10.19342/j.cnki.issn.1009-9212.2020.04.013

  32. Yu J, Ma D, Mei L, Gao Q, Yin W, Zhang X, Yan L, Gu Z, Ma X, Zhao Y (2018) Peroxidase-like activity of MoS2 nanoflakes with different modifications and their application for H2O2 and glucose detection. J Mater Chem B 6:487–498. https://doi.org/10.1039/C7TB02676E

    Article  CAS  Google Scholar 

  33. Ren W, Yan Y, Zeng L, Shi Z, Gong A, Schaaf P, Wang D, Zhao J, Zou B, Yu H, Chen G, Brown EMB, Wu A (2015) A near infrared light triggered hydrogenated black TiO2 for cancer photothermal therapy. Adv Healthcare Mater 4:1526–1536. https://doi.org/10.1002/adhm.201500273

    Article  CAS  Google Scholar 

  34. Yang L, Wang X, Liu Y, Yu Z, Liang J, Chen B, Shi C, Tian S, Li X, Qiu J (2017) Monolayer MoS2 anchored on reduced graphene oxide nanosheets for efficient hydrodesulfurization. Appl Catal B 200:211–221. https://doi.org/10.1016/j.apcatb.2016.07.006

    Article  CAS  Google Scholar 

  35. Hu J, Tang F, Wang L, Tang M, Jiang Y, Liu C (2021) Nanozyme sensor based-on platinum-decorated polymer nanosphere for rapid and sensitive detection of Salmonella typhimurium with the naked eye. Sensor Actuat B Chem 346:130560. https://doi.org/10.1016/j.snb.2021.130560

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31871874) and the Natural Science Foundation of Shandong Province (ZR2020KC031, ZR2021MC132).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Shuyuan Du; data curation: Luxiang Gao; formal analysis: Luxiang Gao, Xiaoyu Xu, Wenxiu Liu, Jinjuan Xie, Shuyuan Du; funding acquisition: Hongyan Zhang; investigation: Luxiang Gao, Wenxiu Liu; methodology: Hongyan Zhang, Shuyuan Du; project administration: Hongyan Zhang; resources: Hongyan Zhang; supervision: Luxiang Gao; validation: Luxiang Gao, Xiaoyu Xu, Wenxiu Liu, Jinjuan Xie; visualization: Luxiang Gao; writing—original draft: Luxiang Gao; writing—review and editing: Shuyuan Du.

Corresponding authors

Correspondence to Hongyan Zhang or Shuyuan Du.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4471 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Xu, X., Liu, W. et al. A sensitive multimode dot-filtration strip for the detection of Salmonella typhimurium using MoS2@Fe3O4. Microchim Acta 189, 475 (2022). https://doi.org/10.1007/s00604-022-05560-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05560-7

Keywords

Navigation