Skip to main content
Log in

SnO2 quantum dots-functionalized Ti3C2 MXene nanosheets for electrochemical determination of dopamine in body fluids

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel SnO2 quantum dots (SnO2QDs)-functionalized Ti3C2 MXene nanocomposite was prepared via in situ synthesis method, resulting in well-regulated the nucleation and growth of SnO2QDs to evenly distribute onto MXene nanosheets. Ultra-small size SnO2QDs decorated on the surface of Ti3C2 MXene nanosheets can effectively prevent the restacking of MXene and remarkably increase the electroactive surface area of the electrode, which can further increase electrocatalytic activity toward dopamine. Then, an ultrasensitive electroanalytical method based on SnO2QDs-functionalized Ti3C2 MXene nanocomposite for dopamine monitoring was developed, and the effects of experimental condition were investigated systematically. Under optimized conditions, the prepared sensor presented a linear dependence for dopamine in the concentration range from 0.004 to 8.0 µM with the detection limit of 2.0 nM (S/N = 3). Moreover, it selectively perceived dopamine in presence of physiological interferents in urine and serum samples with excellent linearities (correlation coefficients higher than 0.9920). The relative recoveries were in the range 97.67–105.3% and 103.0–106.8%, while the limits of quantitation were 10.12 nM and 9.62 nM in urine and serum sample, respectively, demonstrating the method suitability for dopamine sensing and being envisioned as a promising candidate for neurotransmitter monitoring in biological diagnosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu K, Pang T, Shi Y, Han P, Zhao Y, Zhao W, Zeng H, Zhang S, Zhang Z (2021) Magnetic borate-modified Mxene: a highly affinity material for the extraction of catecholamines. Anal Chim Acta 1176:338769

    Article  CAS  Google Scholar 

  2. Lv Q, Chen LS, Liu HX, Zou LL (2022) Peony-like 3D-MoS2/graphene nanostructures with enhanced mimic peroxidase performance for colorimetric determination of dopamine. Talanta 247:123553

    Article  CAS  Google Scholar 

  3. Goldstein DS, Eisenhofer G, Kopin IJ (2003) Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther 305(3):800–811

    Article  CAS  Google Scholar 

  4. Bicker J, Fortuna A, Alves G, Falcão A (2013) Liquid chromatographic methods for the quantification of catecholamines and their metabolites in several biological samples-A review. Anal Chim Acta 768:12–34

    Article  CAS  Google Scholar 

  5. Latif S, Jahangeer M, Razia DM, Ashiq M, Ghaffar A, Akram M, Allam AE, Bouyahya A, Garipova L, Shariati MA, Thiruvengadam M, Ansari MA (2021) Dopamine in Parkinson’s disease. Clin Chim Acta 522:114–126

    Article  CAS  Google Scholar 

  6. Chen F, Fang B, Wang SC (2021) A fast and validated HPLC method for simultaneous determination of dopamine, dobutamine, phentolamine, furosemide, and aminophylline in infusion samples and injection formulations. J Anal Methods Chem 2021:1–9

    CAS  Google Scholar 

  7. Helmschrodt C, Becker S, Perl S, Schulz A, Richter A (2020) Development of a fast liquid chromatography-tandem mass spectrometry method for simultaneous quantification of neurotransmitters in murine microdialysate. Anal Bioanal Chem 412:7777–7787

    Article  CAS  Google Scholar 

  8. Roychoudhury A, Francis KA, Patel J, Jha SK, Basu S (2020) A decoupler-free simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin. RSC Adv 10:25487–25495

    Article  CAS  Google Scholar 

  9. Zhang X, Zhu Y, Li X, Guo X, Zhang B, Jia X, Dai B (2016) A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction. Anal Chim Acta 944:51–56

    Article  CAS  Google Scholar 

  10. Afsharipour R, Dadfarnia S, Haji Shabani AM (2022) Chemiluminescence determination of dopamine using N, P-graphene quantum dots after preconcentration on magnetic oxidized nanocellulose modified with graphene quantum dots. Microchim Acta 189:192

    Article  CAS  Google Scholar 

  11. Ni M, Chen J, Wang C, Wang Y, Huang L, Xiong W, Zhao P, Xie Y, Fei J (2022) A high-sensitive dopamine electrochemical sensor based on multilayer Ti3C2 MXene, graphitized multi-walled carbon nanotubes and ZnO nanospheres. Microchem J 178:107410

    Article  CAS  Google Scholar 

  12. Arumugasamy SK, Govindaraju S, Yun K (2020) Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl Surf Sci 508:145294

    Article  CAS  Google Scholar 

  13. Hira SA, Nagappan S, Annas D, Kumar YA, Park KH (2021) NO2-functionalized metal-organic framework incorporating bimetallic alloy nanoparticles as a sensor for efficient electrochemical detection of dopamine. Electrochem Commun 125:107012

    Article  CAS  Google Scholar 

  14. Yue HY, Zhang HJ, Huang S, Lu XX, Gao X, Song SS, Wang Z, Wang WQ, Guan EH (2020) Highly sensitive and selective dopamine biosensor using Au nanoparticles-ZnO nanoconearrays/graphene foam electrode. Mater Sci Eng C 108:110490

    Article  CAS  Google Scholar 

  15. Pei Y, Zhang X, Hui Z, Zhou J, Huang X, Sun G, Huang W (2021) Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 15:3996–4017

    Article  CAS  Google Scholar 

  16. Shang T, Lin Z, Qi C, Liu X, Li P, Tao Y, Wu Z, Li D, Simon P, Yang QH (2019) 3D macroscopic architectures from self-assembled MXene hydrogels. Adv Funct Mater 29:1903960

    Article  Google Scholar 

  17. Peng Q, Guo J, Zhang Q, Xiang J, Liu B, Zhou A, Liu R, Tian Y (2014) Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc 136:4113–4116

    Article  CAS  Google Scholar 

  18. Shi Y, Zhang X, Mei L, Hu K, Chao L, Li X, Miao M (2021) 2D accordion-like MXene nanosheets as a sensitive electrode material for baicalin sensing. Electroanalysis 33:1308–1314

    Article  CAS  Google Scholar 

  19. Wang L, Cui K, Wang P, Pei M, Guo W (2021) A sensitive electrochemical DNA sensor for detecting Helicobacter pylori based on accordion-like Ti3C2Tx: a simple strategy. Anal Bioanal Chem 413:4353–4362

    Article  CAS  Google Scholar 

  20. Kumar S, Lei Y, Alshareef NH, Quevedo-Lopez MA, Salama KN (2018) Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens Bioelectron 121:243–249

    Article  CAS  Google Scholar 

  21. Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang C, Van Aken KL, Barsoum MW, Gogotsi Y (2015) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 27:339–345

    Article  CAS  Google Scholar 

  22. Rajakumaran R, Anupriya J, Chen SM (2021) 2D-Titanium carbide MXene/RGO composite modified electrode for selective detection of carcinogenic residue furazolidone in food and biological samples. Mater Lett 297:129979

    Article  CAS  Google Scholar 

  23. Tu X, Gao F, Ma X, Zou J, Yu Y, Li M, Qu F, Huang X, Lu L (2020) MXene/carbon nanohorn/β-cyclodextrin Metal-organic frameworks as high performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. J Hazard Mater 396:122776

    Article  CAS  Google Scholar 

  24. Huang R, Liao D, Chen S, Yu J, Jiang X (2020) A strategy for effective electrochemical detection of hydroquinone and catechol: decoration of alkalization-intercalated Ti3C2 with MOF derived N-doped porous carbon. Sensor Actuat B-Chem 320:128386

    Article  CAS  Google Scholar 

  25. Babu B, Kim J, Yoo K (2022) Nanocomposite of SnO2 quantum dots and Au nanoparticles as a battery-like supercapacitor electrode material. Mater Lett 309:131339

    Article  CAS  Google Scholar 

  26. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  27. Gao L, Wu G, Ma J, Jiang T, Chang B, Huang Y, Han S (2020) SnO2 quantum dots@graphene framework as a high-performance flexible anode electrode for lithium-ion batteries. ACS Appl Mater Interfaces 12:12982–12989

    Article  CAS  Google Scholar 

  28. Shi YM, Chao LQ, Mei L, Chen ZH, Li XM, Miao MS (2022) Soluble tetraaminophthalocyanines indium functionalized graphene platforms for rapid and ultra-sensitive determination of rutin in Tartary buckwheat tea. Food Control 132:108550

    Article  CAS  Google Scholar 

  29. Dhiman P, Sharma S, Kumar A, Shekh M, Sharma G, Naushad M (2020) Rapid visible and solar photocatalytic Cr (VI) reduction and electrochemical sensing of dopamine using solution combustion synthesized ZnO-Fe2O3 nano heterojunctions: mechanism Elucidation. Ceram Int 46:12255–12268

    Article  CAS  Google Scholar 

  30. Diab N, Morales DM, Andronescu C, Masoud M, Schuhmann W (2019) A sensitive and selective graphene/cobalt tetrasulfonated phthalocyanine sensor for detection of dopamine. Sensor Actuat B-Chem 285:17–23

    Article  CAS  Google Scholar 

  31. Yang C, Zhang C, Huang T, Dong X, Hua L (2019) Ultra-long ZnO/carbon nanofiber as free-standing electrochemical sensor for dopamine in the presence of uric acid. J Mater Sci 54:14897–14904

    Article  CAS  Google Scholar 

  32. Amara U, Mehran MT, Sarfaraz B, Mahmood K, Hayat A, Nasir M, Riaz S, Nawaz MH (2021) Perylene diimide/MXene-modified graphitic pencil electrode-based electrochemical sensor for dopamine detection. Microchim Acta 188:230

    Article  CAS  Google Scholar 

  33. Gao L, Zheng J (2021) ZIF-8 supported Sb2S3 fabrication carbon coating nanocomposite for dopamine sensor application. Microchem J 171:106782

    Article  CAS  Google Scholar 

  34. Dong Y, Liu J, Zheng J (2021) A sensitive dopamine electrochemical sensor based on hollow zeolitic imidazolate framework. Colloid Surface A 608:125617

    Article  CAS  Google Scholar 

  35. Kaya HK, Cinar S, Altundal G, Bayraml Y, Unaleroglu C, Kuralay F (2021) A novel design thia-bilane structure-based molecular imprinted electrochemical sensor for sensitive and selective dopamine determination. Sensor Actuat B- Chem 346:130425

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key Science and Technology Research Project of Henan Province (212102311037), the National Innovation and Entrepreneurship Training Program for College students in Henan Province (202110471011), the National Natural Science Foundation of China (22174032), and the Henan University of Chinese Medicine (00104358).

Author information

Authors and Affiliations

Authors

Contributions

Yanmei Shi: Investigation, supervision, writing—original draft. Kai Hu: Investigation, methodology. Lin Mei: Methodology, validation. Xueming Yang, Yange Shi: Investigation, methodology. Xiangxiang Wu: Writing—review and editing. Xiu-min Li: Supervision; writing, review and editing; funding acquisition. Mingsan Miao: Supervision, writing—review and editing. Sisen Zhang: Writing—review and editing.

Corresponding authors

Correspondence to Lin Mei, Xiu-min Li or Mingsan Miao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 264 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Hu, K., Mei, L. et al. SnO2 quantum dots-functionalized Ti3C2 MXene nanosheets for electrochemical determination of dopamine in body fluids. Microchim Acta 189, 451 (2022). https://doi.org/10.1007/s00604-022-05555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05555-4

Keywords

Navigation