Skip to main content
Log in

Ratiometric ECL sensor based on Apt-AuNS@Lu nanoprobe for analyzing cell swelling-induced ATP release

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel ratiometric electrochemiluminescence (ECL) system based on gold nanostars (AuNSs) support was constructed for the determination of hypotonicity-induced ATP release from HepG2 cells. AuNS@Lu nanoprobe was used as anodic luminophore and K2S2O8 as cathodic luminophore as well as anodic co-reactant. AuNS with the large specific surface was adopted to adsorb plentiful luminol to form solid-state probe and as affinity support to immobilize ATP aptamer (Apt). The obtained nanocomposite (Apt-AuNS@Lu) generated a strong ECL signal at + 0.4 V (vs. Ag/AgCl) with co-reactant K2S2O8, because of excellent conductivity and catalytic activity of AuNS. Furthermore, graphene oxide was reduced onto indium tin oxide (ITO) electrodes to facilitate the electron transfer. Following, polydopamine (PDA) film was formed via self-polymerization, improving stability and adhesion of the electrode surface. To immobilize ATP capture aptamer (AptC), abounding AuNSs were attached to RGO/PDA surface. When the sensor was incubated in the mixture solution of Apt-AuNS@Lu and target ATP, the ECL signal of Apt-AuNS@Lu increased with the increase of ATP concentration, meanwhile, the signal of K2S2O8 declined. The ratio of the two luminophores was used for the quantitative determination of ATP. The linear range was 5 to 250 nM, and the limit of detection was 1.4 nM at (3σ)/S. The method was successfully applied to analyze ATP release from HepG2 cells stimulated by 0.45% NaCl hypotonic solution. The results showed that the release kinetics profile of ATP had a sigmoidal shape with rapid release within 10 min and then slowed. Compared to the isotonic groups, the intracellular ATP concentration was 3.7 ± 0.3 µM (n = 3) decreasing by 40.3% and the extracellular was 23.4 ± 1.2 nM (n = 3) increasing by 9.2 times in the hypotonicity for 10 min, which showed ATP release from cells and good agreement with commercial ELISA test. The proposed strategy would be beneficial to broadening application of ECL technology in studying cell biological functions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89(1):193–277. https://doi.org/10.1152/physrev.00037.2007

    Article  CAS  PubMed  Google Scholar 

  2. Lang F, Busch GL, Ritter M et al (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78(1):247–306. https://doi.org/10.1152/physrev.1998.78.1.247

    Article  CAS  PubMed  Google Scholar 

  3. Jentsch TJ (2016) VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat Rev Mol Cell Biol 17(5):293–307. https://doi.org/10.1038/nrm.2016.29

    Article  CAS  PubMed  Google Scholar 

  4. Okada Y, Okada T, Islam MR et al (2018) Molecular identities and ATP release activities of two types of volume-regulatory anion channels, VSOR and Maxi-Cl. Cell Volume Regulation 81:125–176. https://doi.org/10.1016/bs.ctm.2018.07.004

    Article  CAS  Google Scholar 

  5. Okada SF, Nicholas RA, Kreda SM et al (2006) Physiological regulation of ATP release at the apical surface of human airway epithelia. J Biol Chem 281(32):22992–23002. https://doi.org/10.1074/jbc.M603019200

    Article  CAS  PubMed  Google Scholar 

  6. Hammami S, Willumsen NJ, Meinild AK et al (2013) Purinergic signalling - a possible mechanism for KCNQ1 channel response to cell volume challenges. Acta Physiol (Oxf) 207(3):503–515. https://doi.org/10.1111/j.1748-1716.2012.02460.x

    Article  CAS  Google Scholar 

  7. Zhang Y, Clausmeyer J, Babakinejad B et al (2016) Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano 10(3):3214–3221. https://doi.org/10.1021/acsnano.5b05211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou X, Li J, Tan LL et al (2020) Novel perylene probe-encapsulated metal-organic framework nanocomposites for ratiometric fluorescence detection of ATP. J Mater Chem B 8(16):3661–3666. https://doi.org/10.1039/c9tb02319d

    Article  CAS  PubMed  Google Scholar 

  9. Huo Y, Qi L, Lv XJ et al (2016) A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron 78:315–320. https://doi.org/10.1016/j.bios.2015.11.043

    Article  CAS  PubMed  Google Scholar 

  10. Gourine AV, Dale N, Llaudet E et al (2007) Release of ATP in the central nervous system during systemic inflammation: real-time measurement in the hypothalamus of conscious rabbits. J Physiol 585(Pt 1):305–316. https://doi.org/10.1113/jphysiol.2007.143933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li X, Yang JM, Xie JQ et al (2018) Cascaded signal amplification via target-triggered formation of aptazyme for sensitive electrochemical detection of ATP. Biosens Bioelectron 102:296–300. https://doi.org/10.1016/j.bios.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  12. Liu YT, Lei JP, Huang Y et al (2014) “Off-On” electrochemiluminescence system for sensitive detection of ATP via target-induced structure switching. Anal Chem 86(17):8735–8741. https://doi.org/10.1021/ac501913c

    Article  CAS  PubMed  Google Scholar 

  13. Dong YP, Zhou Y, Wang J et al (2016) Electrogenerated chemiluminescence resonance energy transfer between Ru(bpy)(2+)(3) electrogenerated chemiluminescence and gold nanoparticles/graphene oxide nanocomposites with graphene oxide as coreactant and its sensing application. Anal Chem 88(10):5469–5475. https://doi.org/10.1021/acs.analchem.6b00921

    Article  CAS  PubMed  Google Scholar 

  14. Liu ZY, Zhang W, Qi WJ et al (2015) Label-free signal-on ATP aptasensor based on the remarkable quenching of tris(2,2 ’-bipyridine)-ruthenium(II) electrochemiluminescence by single-walled carbon nanohorn. Chem Commun 51(20):4256–4258. https://doi.org/10.1039/c5cc00037h

    Article  CAS  Google Scholar 

  15. Xu H-Y, Jin L-S, Xu N et al (2018) Dual-quenching strategy for determination of ATP based on aptamer and exonuclease I-assisted electrochemiluminescence resonance energy transfer. Anal Methods 10(20):2347–2352. https://doi.org/10.1039/C8AY00465J

    Article  CAS  Google Scholar 

  16. Deiss F, Lafratta CN, Symer M et al (2009) Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J Am Chem Soc 131(17):6088–6089. https://doi.org/10.1021/ja901876z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu LZ, Xu GB (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39(8):3275–3304. https://doi.org/10.1039/b923679c

    Article  CAS  PubMed  Google Scholar 

  18. Huo XL, Lu HJ, Xu JJ et al (2019) Recent advances of ratiometric electrochemiluminescence biosensors. J Mater Chem B 7(42):6469–6475. https://doi.org/10.1039/c9tb01823a

    Article  CAS  PubMed  Google Scholar 

  19. Huo XL, Zhang N, Yang H et al (2018) Electrochemiluminescence resonance energy transfer system for dual-wavelength ratiometric miRNA detection. Anal Chem 90(22):13723–13728. https://doi.org/10.1021/acs.analchem.8b04141

    Article  CAS  PubMed  Google Scholar 

  20. Zhu L, Zhang M, Ye J et al (2020) Ratiometric electrochemiluminescent/electrochemical strategy for sensitive detection of microRNA based on duplex-specific nuclease and multilayer circuit of catalytic hairpin assembly. Anal Chem 92(12):8614–8622. https://doi.org/10.1021/acs.analchem.0c01949

    Article  CAS  PubMed  Google Scholar 

  21. Hu Y, He YC, Peng ZC et al (2020) A ratiometric electrochemiluminescence sensing platform for robust ascorbic acid analysis based on a molecularly imprinted polymer modified bipolar electrode. Biosens Bioelectron 167:112490. https://doi.org/10.1016/j.bios.2020.112490

  22. Nie Y, Liu Y, Zhang Q et al (2020) Fe3O4 NP@ZIF-8/MoS2 QD-based electrochemiluminescence with nanosurface energy transfer strategy for point-of-care determination of ATP. Anal Chim Acta 1127:190–197. https://doi.org/10.1016/j.aca.2020.06.051

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Nie YX, Zhang Q et al (2020) A novel L-cysteine regulated polydopamine nanoparticle-based electrochemiluminescence image application. J Mater Chem C 8(25):8592–8600. https://doi.org/10.1039/D0TC01499K

    Article  CAS  Google Scholar 

  24. Li M, Yang HM, Ma C et al (2014) A sensitive signal-off aptasensor for adenosine triphosphate based on the quenching of Ru(bpy)(3)(2+)-doped silica nanoparticles electrochemiluminescence by ferrocene. Sens Actuators B Chem 191:377–383. https://doi.org/10.1016/j.snb.2013.10.020

    Article  CAS  Google Scholar 

  25. Lu J, Yan M, Ge L et al (2013) Electrochemiluminescence of blue-luminescent graphene quantum dots and its application in ultrasensitive aptasensor for adenosine triphosphate detection. Biosens Bioelectron 47:271–277. https://doi.org/10.1016/j.bios.2013.03.039

    Article  CAS  PubMed  Google Scholar 

  26. Ning Z, Zheng Y, Pan D et al (2020) Coupling aptazyme and catalytic hairpin assembly for cascaded dual signal amplified electrochemiluminescence biosensing. Biosens Bioelectron 150:111945. https://doi.org/10.1016/j.bios.2019.111945

    Article  CAS  PubMed  Google Scholar 

  27. Li LY, Liu K, Fang DJ (2020) Single cell electrochemiluminescence analysis of cholesterol in plasma membrane during testosterone treatment. Electroanalysis 32(5):958–963. https://doi.org/10.1002/elan.201900561

    Article  CAS  Google Scholar 

  28. Li X, Du Y, Wang H et al (2020) Self-supply of H2O2 and O2 by hydrolyzing CaO2 to enhance the electrochemiluminescence of luminol based on a closed bipolar electrode. Anal Chem 92(18):12693–12699. https://doi.org/10.1021/acs.analchem.0c03170

    Article  CAS  PubMed  Google Scholar 

  29. Wang T, Zhang S, Mao C et al (2012) Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. Biosens Bioelectron 31(1):369–375. https://doi.org/10.1016/j.bios.2011.10.048

    Article  CAS  PubMed  Google Scholar 

  30. Cheng W, Zeng X, Chen H et al (2019) Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 13(8):8537–8565. https://doi.org/10.1021/acsnano.9b04436

    Article  CAS  PubMed  Google Scholar 

  31. Mousavi SM, Zarei M, Hashemi SA et al (2020) Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab Rev 52(2):299–318. https://doi.org/10.1080/03602532.2020.1734021

    Article  CAS  PubMed  Google Scholar 

  32. Dam DHM, Lee RC, Odom TW (2014) Improved in vitro efficacy of gold nanoconstructs by increased loading of G-quadruplex aptamer. Nano Lett 14(5):2843–2848. https://doi.org/10.1021/nl500844m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han XX, Xu Y, Li YY et al (2019) An extendable star-like nanoplatform for functional and anatomical imaging-guided photothermal oncotherapy. ACS Nano 13(4):4379–4391. https://doi.org/10.1021/acsnano.8b09607

    Article  CAS  PubMed  Google Scholar 

  34. Del Valle AC, Su CK, Sun YC et al (2020) NIR-cleavable drug adducts of gold nanostars for overcoming multidrug-resistant tumors. Biomaterials Science 8(7):1934–1950. https://doi.org/10.1039/C9BM01813A

    Article  PubMed  Google Scholar 

  35. Bhamidipati M, Cho HY, Lee KB et al (2018) SERS-based quantification of biomarker expression at the single cell level enabled by gold nanostars and truncated aptamers. Bioconjug Chem 29(9):2970–2981. https://doi.org/10.1021/acs.bioconjchem.8b00397

    Article  CAS  PubMed  Google Scholar 

  36. Tanwar S, Haldar KK, Sen T (2017) DNA origami directed Au nanostar dimers for single-molecule surface-enhanced Raman scattering. J Am Chem Soc 139(48):17639–17648. https://doi.org/10.1021/jacs.7b10410

    Article  CAS  PubMed  Google Scholar 

  37. Zhang A, Guo WW, Ke H et al (2018) Sandwich-format ECL immunosensor based on Au star@BSA-Luminol nanocomposites for determination of human chorionic gonadotropin. Biosens Bioelectron 101:219–226. https://doi.org/10.1016/j.bios.2017.10.040

    Article  CAS  PubMed  Google Scholar 

  38. Chenaghlou S, Khataee A, Jalili R et al (2021) Gold nanostar-enhanced electrochemiluminescence immunosensor for highly sensitive detection of cancer stem cells using CD133 membrane biomarker. Bioelectrochemistry 137:107633. https://doi.org/10.1016/j.bioelechem.2020.107633

  39. Du BJ, Gu XX, Zhao WJ et al (2016) Hybrid of gold nanostar and indocyanine green for targeted imaging-guided diagnosis and phototherapy using low-density laser irradiation. J Mater Chem B 4(35):5842–5849. https://doi.org/10.1039/c6tb01375a

    Article  CAS  PubMed  Google Scholar 

  40. Sasidharan S, Bahadur D, Srivastava R (2016) Albumin stabilized gold nanostars: a biocompatible nanoplatform for SERS, CT imaging and photothermal therapy of cancer. RSC Adv 6(87):84025–84034. https://doi.org/10.1039/C6RA11405A

    Article  CAS  Google Scholar 

  41. Niu HA, Yuan R, Chai YQ et al (2011) Electrochemiluminescence of peroxydisulfate enhanced by L-cysteine film for sensitive immunoassay. Biosens Bioelectron 26(7):3175–3180. https://doi.org/10.1016/j.bios.2010.12.023

    Article  CAS  PubMed  Google Scholar 

  42. Pafundo DE, Chara O, Faillace MP et al (2008) Kinetics of ATP release and cell volume regulation of hyposmotically challenged goldfish hepatocytes. Am J Physiol Regul Integr Comp Physiol 294(1):R220–R233. https://doi.org/10.1152/ajpregu.00522.2007

    Article  CAS  PubMed  Google Scholar 

  43. Sabirov RZ, Merzlyak PG, Islam MR et al (2016) The properties, functions, and pathophysiology of maxi-anion channels. Pflug Arch Eur J Phy 468(3):405–420. https://doi.org/10.1007/s00424-015-1774-5

    Article  CAS  Google Scholar 

  44. Wang W, Li X, Tang K et al (2020) A AuNP-capped cage fluorescent biosensor based on controlled-release and cyclic enzymatic amplification for ultrasensitive detection of ATP. J Mater Chem B 8(27):5945–5951. https://doi.org/10.1039/D0TB00666A

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful to the financial support by the National Natural Science Foundation of China (21874057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peihui Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 683 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Xiao, M., Feng, D. et al. Ratiometric ECL sensor based on Apt-AuNS@Lu nanoprobe for analyzing cell swelling-induced ATP release. Microchim Acta 189, 423 (2022). https://doi.org/10.1007/s00604-022-05491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05491-3

Keywords

Navigation