Skip to main content
Log in

Sustainable architecting of Co2SnO4/CE-BN-based electrochemical platform for highly selective and ultrasensitive detection of 2-nitroaniline in life samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel binary heterogeneous electrocatalyst, Co2SnO4, decorated on chemically exfoliated boron nitride sheets (CE-BN) with an exceptional capacity to detect electrochemical properties has been prepared by the simple hydrothermal method. The structural, surface morphology and electrochemical characteristics of Co2SnO4/CE-BN were characterized using a range of physicochemical and electrochemical techniques. Various voltammetric approaches were used to observe the analytical behaviour and applications of Co2SnO4/CE-BN/GCE for the determination of 2-nitroaniline (2-NA). The whole experiment is operated in the potential range from 0 to − 1.0 V vs Ag/AgCl (sat. KCl). The impact of operational factors on the peak current of 2-NA was investigated, including the pH, sample concentration, modifier amount and scan speed. With an estimated differential pulse voltammetry detection limit of 0.0371 µM and excellent sensitivity of 1,35 µA µM−1 cm−2, the produced sensor, Co2SnO4/CE-BN/GCE, revealed high electrocatalytic activity (DPV). The system is more practical and sustainable due to its repeatability, stability and reproducibility with respect to the results achieved for detection of 2-NA. The synthesized Co2SnO4/CE-BN-modified sensor may thus be a likely choice for the detection of 2-NA in actual water sample analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Sharma R, Sinha A, Kautish P (2021) Does financial development reinforce environmental footprints evidence from emerging Asian countries. Environ Sci Pollut Res 28:9067–9083. https://doi.org/10.1007/s11356-020-11295-w

    Article  Google Scholar 

  2. Pei Y, Zhu Y, Liu S, Xie M (2021) Industrial agglomeration and environmental pollution: based on the specialized and diversified agglomeration in the Yangtze River Delta. Environ Dev Sustain 23:4061–4085. https://doi.org/10.1007/s10668-020-00756-4

    Article  Google Scholar 

  3. Anusuya N, Pragathiswaran C, Mary JV (2021) A potential catalyst-TiO2/ZnO based chitosan gel beads for the reduction of nitro-aromatic compounds aggregated sodium borohydride and their antimicrobial activity. J Mol Struct 1236:130197. https://doi.org/10.1016/j.molstruc.2021.130197

    Article  CAS  Google Scholar 

  4. Mal D, Alveroglu E, Balouch A, Jagirani MS, Abdullah SK (2021) Highly efficient and selective heterogeneous catalytic reduction of 2-nitroaniline by cerium oxide nanocatalyst under microwave irradiation. Environ Technol 1–31. https://doi.org/10.1039/D2NJ01453J

  5. Mbiagaing CD, Tagne AJ, Ngnie G, Dedzo GK, Ngameni E (2022) Application of palladium nanoparticle supported organo-kaolinite for 4-chloro-2-nitroaniline catalytic reduction and electrochemical detection. New J Chem 46:9767–9774. https://doi.org/10.1039/D2NJ01453J

    Article  CAS  Google Scholar 

  6. Tong C, Guo Y, Liu W (2010) Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chemosphere 81:430–435. https://doi.org/10.1016/j.chemosphere.2010.06.066h

    Article  CAS  PubMed  Google Scholar 

  7. Gnanaprakasam P, Selvaraju T (2014) Green synthesis of self assembled silver nanowire decorated reduced graphene oxide for efficient nitroarene reduction. RSC Adv 4:24518–24525. https://doi.org/10.1039/C4RA01798F

    Article  CAS  Google Scholar 

  8. Blakey D, Maus K, Bell R, Bayley J, Douglas GR, Nestmann E (1994) Mutagenic activity of 3 industrial chemicals in a battery of in vitro and in vivo tests. Mutat Res/Genet Toxicol 320:273–283. https://doi.org/10.1016/0165-1218(94)90080-9

    Article  CAS  Google Scholar 

  9. Alderton W, Berghmans S, Butler P, Chassaing H, Fleming A, Golder Z, Richards F, Gardner I (2010) Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae. Xenobiotica 40:547–557. https://doi.org/10.3109/00498254.2010.493960

    Article  CAS  PubMed  Google Scholar 

  10. Dobbins JP, Abkowitz MD (2003) Development of a centralized inland marine hazardous materials response database. J Hazard Mater 102(2–3):201–216. https://doi.org/10.1016/S0304-3894(03)00170-5

    Article  CAS  PubMed  Google Scholar 

  11. Bryant Derek L, Abkowitz Mark D (2007) Development of a terrestrial chemical spill management system. J Hazard Mater 147(1–2):78–90. https://doi.org/10.1016/j.jhazmat.2006.12.048

    Article  CAS  PubMed  Google Scholar 

  12. Liu S, Yang H, Yang S, Huang Y, Xiang Z, Ouyang G (2020) Carbon dots based solid phase microextraction of 2-nitroaniline followed by fluorescence sensing for selective early screening and sensitive gas chromatography-mass spectrometry determination. Anal Chim Acta 1111:147–154. https://doi.org/10.1016/j.aca.2020.03.024

    Article  CAS  PubMed  Google Scholar 

  13. Palpandi K, Bhuvaneswari C, Babu SG, Raman N (2022) Rational design of ruddlesden–popper phase Mn2SnO4 for ultra-sensitive and highly selective detection of chloramphenicol in real-life samples. New J Chem. https://doi.org/10.1039/D2NJ00813K

    Article  Google Scholar 

  14. Palpandi K, Raman N (2020) Electrochemical detection of 2-nitroaniline at a novel sphere-like Co2SnO4 modified glassy carbon electrode. New J Chem 44:8454–8462. https://doi.org/10.1039/D0NJ01098G

    Article  CAS  Google Scholar 

  15. Raj BGS, Bhuvaneshwari S, Wu JJ, Asiri AM, Anandan S (2018) Sonochemical synthesis of Co2SnO4 nanocubes for supercapacitor applications. Ultrason Sonochem 41:435–440. https://doi.org/10.1016/j.ultsonch.2017.10.006

    Article  CAS  Google Scholar 

  16. Aguilar-Martínez J, Pech-Canul M, Esneider M, Toxqui A, Shaji S (2012) Synthesis, structure parameter and reaction pathway for spinel-type Co2SnO4. Mater Lett 78:28–31. https://doi.org/10.1016/j.matlet.2012.03.042

    Article  CAS  Google Scholar 

  17. Babu SG, Vinoth R, Neppolian B, Dionysiou DD, Ashokkumar M (2015) Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst. J Hazard Mater 291:83–92. https://doi.org/10.1016/j.jhazmat.2015.02.071

    Article  CAS  PubMed  Google Scholar 

  18. Sriram B, Baby JN, Hsu Y-F, Wang S-F, George M (2021) Synergy of the LaVO4/h-BN Nanocomposite: a highly active electrocatalyst for the rapid analysis of carbendazim. Inorg Chem 60:5271–5281. https://doi.org/10.1021/acs.inorgchem.1c00253

    Article  CAS  PubMed  Google Scholar 

  19. Kokulnathan T, Almutairi G, Chen S-M, Chen T-W, Ahmed F, Arshi N, AlOtaibi B (2021) Construction of lanthanum vanadate/functionalized boron nitride nanocomposite: the electrochemical sensor for monitoring of furazolidone. ACS Sustain Chem Eng 9:2784–2794. https://doi.org/10.1021/acssuschemeng.0c08340

    Article  CAS  Google Scholar 

  20. Zhang J, Liang J, Zhu Y, Wei D, Fan L, Qian Y (2014) Synthesis of Co 2 SnO 4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries. J Mater Chem A 2:2728–2734. https://doi.org/10.1039/C3TA13228E

    Article  CAS  Google Scholar 

  21. Sundararaj SB, Tamilarasan S, Thangavelu S (2022) Layered porous graphitic carbon nitride stabilized effective Co2SnO4 inverse spinel as a bifunctional electrocatalyst for overall water splittinG. Langmuir 38:7833–7845. https://doi.org/10.1021/acs.langmuir.2c01095

    Article  CAS  PubMed  Google Scholar 

  22. Bhuvaneswari C, Babu SG (2022) Nanoarchitecture and surface engineering strategy for the construction of 3D hierarchical CuS-rGO/g-C3N4 nanostructure: an ultrasensitive and highly selective electrochemical sensor for the detection of furazolidone drug. J Electroanal Chem 907:116080. https://doi.org/10.1016/j.jelechem.2022.116080

    Article  CAS  Google Scholar 

  23. Wang X, Yang Y, Jiang G, Yuan Z, Yuan S (2018) A facile synthesis of boron nitride nanosheets and their potential application in dye adsorption. Diam Relat Mater 81:89–95. https://doi.org/10.1016/j.diamond.2017.11.012

    Article  CAS  Google Scholar 

  24. Ganesh Babu S, Vinoth R, Surya Narayana P, Bahnemann D, Neppolian BJAM (2015) Reduced graphene oxide wrapped Cu2O supported on C3N4: an efficient visible light responsive semiconductor photocatalyst. J APL Materials 3:104415. https://doi.org/10.1063/1.4928286

    Article  CAS  Google Scholar 

  25. Qi Y, Du N, Zhang H, Wu P, Yang D (2011) Synthesis of Co2SnO4@C core–shell nanostructures with reversible lithium storage. J Power Sources 196:10234–10239. https://doi.org/10.1016/j.jpowsour.2011.08.085

    Article  CAS  Google Scholar 

  26. Labidi A (2021) Novel ethanol sensing properties of sprayed ternary Co2SnO4 thin layer. Mater Lett 294:129784. https://doi.org/10.1016/j.matlet.2021.129784

    Article  CAS  Google Scholar 

  27. Bhimanapati GR, Kozuch D, Robinson JA (2014) Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets. Nanoscale 6:11671–11675. https://doi.org/10.1039/C4NR01816H

    Article  CAS  PubMed  Google Scholar 

  28. Krishnapandi A, Muthukutty B, Chen S-M, Arul KT, Shiuan HJ, Selvaganapathy M (2021) Bismuth molybdate incorporated functionalized carbon nanofiber as an electrocatalytic tool for the pinpoint detection of organic pollutant in life samples. Ecotoxicol Environ Saf 209:111828. https://doi.org/10.1016/j.ecoenv.2020.111828

    Article  CAS  PubMed  Google Scholar 

  29. Umar A, Kumar R, Algadi H, Ahmed J, Jalalah M, Ibrahim A, Harraz FA, Alsaiari MA, Albargi H (2021) Highly sensitive and selective 2-nitroaniline chemical sensor based on Ce-doped SnO2 nanosheets/Nafion-modified glassy carbon electrode. Adv Compos Hybrid Mater 4:1015–1026. https://doi.org/10.1007/s42114-021-00283-4

    Article  CAS  Google Scholar 

  30. Ibrahim AA, Umar A, Kumar R, Kim S, Bumajdad A, Baskoutas S (2016) Sm2O3-doped ZnO beech fern hierarchical structures for nitroaniline chemical sensor. Ceram Int 42:16505–16511. https://doi.org/10.1016/j.ceramint.2016.07.061

    Article  CAS  Google Scholar 

  31. Ahmad N, Umar A, Kumar R, Alam M (2016) Microwave-assisted synthesis of ZnO doped CeO2 nanoparticles as potential scaffold for highly sensitive nitroaniline chemical sensor. Ceram Int 42:11562–11567. https://doi.org/10.1016/j.ceramint.2016.04.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the VIT management for characterization support and infrastructure.

Funding

VIT seed grant (SG20210159) for financial support. VIT provided the fellowship to CB.

Author information

Authors and Affiliations

Authors

Contributions

Chellapandi Bhuvaneswari: methodology, writing—original draft preparation.

Karuppaiya Palpandi: methodology, electrochemical sensing studies.

Natarajan Raman: reviewing and editing

Sundaram Ganesh Babu: conceptualization, methodology, writing — reviewing and editing.

Corresponding author

Correspondence to Sundaram Ganesh Babu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 828 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvaneswari, C., Palpandi, K., Raman, N. et al. Sustainable architecting of Co2SnO4/CE-BN-based electrochemical platform for highly selective and ultrasensitive detection of 2-nitroaniline in life samples. Microchim Acta 189, 390 (2022). https://doi.org/10.1007/s00604-022-05484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05484-2

Keywords

Navigation