Skip to main content
Log in

Colorimetric determination of biothiols based on peroxidase-mimicking Ag nanoparticles decorated Ti3C2 nanosheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract 

Ag nanoparticle–decorated Ti3C2 nanosheets (AgNPs@Ti3C2 NSs) were facilely synthesized via a self-reduction approach, in which Ti3C2 NSs acted as both reductant and supporter. The AgNPs@Ti3C2 NS nanocomposite exhibited excellent peroxidase-like activity with o-phenylenediamine (OPD) and H2O2 as substrates. The catalytic behavior followed the typical Michaelis–Menten kinetics; Michaelis constant (Km) and maximum initial velocity (Vmax) for OPD were 0.263 mM and 43.2 × 10–8 M−1 s, indicating high affinity and high catalytic efficiency towards OPD. The catalytic mechanism was revealed to be an accelerated electron transfer process. Based on the inhibition effect on the peroxidase-like activity of AgNPs@Ti3C2 NSs, a simple, fast, and sensitive colorimetric method for detection of low-weight biothiols (cysteine (Cys), homocysteine (Hcy), and glutathione (GSH)) was developed by measuring the absorbance at 425 nm. The colorimetric method displayed wide linear range (50 nM to 50 μM for Cys, 10 nM to 250 μM for Hcy, 10 nM to 50 μM for GSH), low limit of detection (48.5 nM for Cys, 5.5 nM for Hcy, 7.0 nM for GSH), and good selectivity and short assay time (3 min). Moreover, the feasibility of this colorimetric sensor was demonstrated by accurately determining Cys in diluted human serum samples; good recovery (95.9–101.0%) and low relative standard deviations (2.8–4.9%) were obtained, showing great promise for point-of-care test in clinical samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu W, Chen J, Xu Z (2021) Fluorescent probes for biothiols based on metal complex. Coord Chem Rev 429:213638

    Article  CAS  Google Scholar 

  2. Xue H, Yu M, He K, Liu Y, Cao Y, Shui Y, Li J, Farooq M, Wang L (2020) A novel colorimetric and fluorometric probe for biothiols based on MnO2 NFs-Rhodamine B system. Anal Chim Acta 1127:39–48

    Article  CAS  Google Scholar 

  3. Kędzierska M, Głowacki R, Czernek U, Szydłowska-Pazera K, Potemski P, Piekarski J, Jeziorski A, Olas B (2013) Changes in plasma thiol levels induced by different phases of treatment in breast cancer; the role of commercial extract from black chokeberry. Mol Cell Biochem 372:47–55

    Article  Google Scholar 

  4. Puertas M, Martinez-Martos J, Cobo M, Carrera M, Mayas M, Ramirez-Exposito M (2012) Plasma oxidative stress parameters in men and women with early stage Alzheimer type dementia. Exp Gerontol 47:625–630

    Article  CAS  Google Scholar 

  5. Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C (2021) Changes in glutathione content in liver diseases: an update. Antioxidants 10:364

    Article  CAS  Google Scholar 

  6. Isokawa M, Kanamori T, Funatsu T, Tsunoda M (2014) Analytical methods involving separation techniques for determination of low-molecular-weight biothiols in human plasma and blood. J Chromatogr B 964:103–115

    Article  CAS  Google Scholar 

  7. Duan W, Qiu Z, Cao S, Guo Q, Huang J, Xing J, Lu X, Zeng J (2022) Pd-Fe3O4 Janus nanozyme with rational design for ultrasensitive colorimetric detection of biothiols. Biosens Bioelectron 196:113724

    Article  CAS  Google Scholar 

  8. Dai J, Ma C, Zhang P, Fu Y, Shen B (2020) Recent progress in the development of fluorescent probes for detection of biothiols. Dyes Pigm 177:108321

    Article  CAS  Google Scholar 

  9. Shen Y, Yue J, Shi W, Xu W, Xu S (2020) Target-triggered hot spot dispersion for cellular biothiol detection via background-free surface-enhanced Raman scattering tags. Biosens Bioelectron 151:111957

    Article  CAS  Google Scholar 

  10. Mostafa IM, Liu H, Hanif S, Gilani MRHS, Guan Y, Xu G (2022) Synthesis of a novel electrochemical probe for the sensitive and selective detection of biothiols and its clinical applications. Anal Chem 94:6853–6859

    Article  CAS  Google Scholar 

  11. Zhang X, Wu D, Zhou X, Yu Y, Liu J, Hu N, Wang H, Li G, Wu Y (2019) Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC, Trends Anal Chem 121:115668

    Article  CAS  Google Scholar 

  12. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577

    Article  CAS  Google Scholar 

  13. Jiang X, Wang X, Lin A, Wei H (2021) In situ exsolution of noble-metal nanoparticles on perovskites as enhanced peroxidase mimics for bioanalysis. Anal Chem 93:5954–5962

    Article  CAS  Google Scholar 

  14. Wang D, Song X, Li P, Gao XJ, Gao X (2020) Origins of the peroxidase mimicking activities of graphene oxide from first principles. J Mater Chem B 8:9028–9034

    Article  CAS  Google Scholar 

  15. Jin Z, Xu G, Niu Y, Ding X, Han Y, Kong W, Fang Y, Niu H, Xu Y (2020) Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. J Mater Chem B 8:3513–3518

    Article  CAS  Google Scholar 

  16. Wang L, Hu Z, Wu S, Pan J, Xu X, Niu X (2020) A peroxidase-mimicking Zr-based MOF colorimetric sensing array to quantify and discriminate phosphorylated proteins. Anal Chim Acta 1121:26–34

    Article  CAS  Google Scholar 

  17. Jin C, Lian J, Gao Y, Guo K, Wu K, Gao L, Zhang X, Zhang X, Liu Q (2019) Si doped CoO nanorods as peroxidase mimics for colorimetric sensing of reduced glutathione. ACS Sustainable Chem Eng 7:13989–13998

    Article  CAS  Google Scholar 

  18. Zhu X, Zhang Y, Liu M, Liu Y (2021) 2D titanium carbide MXenes as emerging optical biosensing platforms. Biosens Bioelectron 171:112730

    Article  CAS  Google Scholar 

  19. Zhang Q, Sun Y, Liu M, Liu Y (2020) Selective detection of Fe3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect. Nanoscale 12:1826–1832

    Article  CAS  Google Scholar 

  20. Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y (2018) Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal Chem 90:12737–12744

    Article  CAS  Google Scholar 

  21. Li M, Peng X, Han Y, Fan L, Liu Z, Guo Y (2021) Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem J 166:106238

    Article  CAS  Google Scholar 

  22. Chen D, Shao S, Zhang W, Zhao J, Lian M (2022) Nitrogen and sulfur co-doping strategy to trigger the peroxidase-like and electrochemical activity of Ti3C2 nanosheets for sensitive uric acid detection. Anal Chim Acta 1197:339520

    Article  CAS  Google Scholar 

  23. Li Y, Kang Z, Kong L, Shi H, Zhang Y, Cui M, Yang D-P (2019) MXene-Ti3C2/CuS nanocomposites: Enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection. Mater Sci Eng C 104:110000

    Article  CAS  Google Scholar 

  24. Satheeshkumar E, Makaryan T, Melikyan A, Minassian H, Gogotsi Y, Yoshimura M (2016) One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci Rep 6:1–9

    Article  Google Scholar 

  25. He Y, Zhou X, Zhou L, Zhang X, Ma L, Jiang Y, Gao J (2020) Self-reducing prussian blue on Ti3C2Tx MXene nanosheets as a dual-functional nanohybrid for hydrogen peroxide and pesticide sensing. Ind Eng Chem Res 59:15556–15564

    Article  CAS  Google Scholar 

  26. Zhao X, Vashisth A, Prehn E, Sun W, Shah SA, Habib T, Chen Y, Tan Z, Lutkenhaus JL, Radovic M (2019) Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 1:513–526

    Article  Google Scholar 

  27. Bian R, He G, Zhi W, Xiang S, Wang T, Cai D (2019) Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J Mater Chem C 7:474–478

    Article  CAS  Google Scholar 

  28. Jiang Y, Zhang X, Pei L, Yue S, Ma L, Zhou L, Huang Z, He Y, Gao J (2018) Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor. Chem Eng J 339:547–556

    Article  CAS  Google Scholar 

  29. Pandey RP, Rasool K, Madhavan VE, Aïssa B, Gogotsi Y, Mahmoud KA (2018) Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J Mater Chem A 6:3522–3533

    Article  CAS  Google Scholar 

  30. Lu L, Han X, Lin J, Zhang Y, Qiu M, Chen Y, Li M, Tang D (2021) Ultrasensitive fluorometric biosensor based on Ti3C2 MXenes with Hg2+-triggered exonuclease III-assisted recycling amplification. Analyst 146:2664–2669

    Article  CAS  Google Scholar 

  31. Liu C, Xu Q, Zhang Q, Zhu Y, Ji M, Tong Z, Hou W, Zhang Y, Xu J (2019) Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity. J Mater Sci 54:2458–2471

    Article  CAS  Google Scholar 

  32. Fornera S, Walde P (2010) Spectrophotometric quantification of horseradish peroxidase with o-phenylenediamine. Anal Biochem 407:293–295

    Article  CAS  Google Scholar 

  33. Dong J, Song L, Yin J-J, He W, Wu Y, Gu N, Zhang Y (2014) Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl Mater Interfaces 6:1959–1970

    Article  CAS  Google Scholar 

  34. Fu M, Liu M, Wu X, Cai Z, Zhang X, Xi Z, Wang Y, Dai C, Kang X, Liu Z (2022) A novel ternary Ag-Cu2O/Ti3C2 heterostructure with high peroxidase-like activity for on-site colorimetric detection of galactose. Sens Actuators, B 369:132343

    Article  CAS  Google Scholar 

  35. Liu X, Wang X, Han Q, Qi C, Wang C, Yang R (2019) Facile synthesis of IrO2/rGO nanocomposites with high peroxidase-like activity for sensitive colorimetric detection of low weight biothiols. Talanta 203:227–234

    Article  CAS  Google Scholar 

  36. Xiong Y, Chen S, Ye F, Su L, Zhang C, Shen S, Zhao S (2015) Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem Commun 51:4635–4638

    Article  CAS  Google Scholar 

  37. Zheng W, Shen D, Pan Y, Yi D, Long Y, Zheng H (2019) Enhancing the peroxidase-like activity of ficin by rational blocking thiol groups for colorimetric detection of biothiols. Talanta 204:833–839

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (Grant no. 62001335), Young and Middle-Aged Talent Program of Hubei Provincial Department of Education (Q20201508), and Scientific Research Foundation of Wuhan Institute of Technology (K201940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2202 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Z., Guo, J., Zou, J. et al. Colorimetric determination of biothiols based on peroxidase-mimicking Ag nanoparticles decorated Ti3C2 nanosheets. Microchim Acta 189, 369 (2022). https://doi.org/10.1007/s00604-022-05472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05472-6

Keywords

Navigation