Skip to main content
Log in

PMMA/paper hybrid microfluidic chip for simultaneous determination of arginine and valine in human plasma

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The simultaneous determination is reported of arginine (Arg) and valine (Val) amino acids in plasma using flower-shaped μPADs and PMMA/paper hybrid microfluidic chip based on AuNPs capped with R-thiazolidine-4-carboxylic acid (THP). In this article, the evaluation procedure is based on the smartphone colorimetric detection mechanism that results from the aggregation of the THP-AuNPs with the addition of amino acids and visual color change from red to blue. Arg and Val were selectively determined with good reproducibility and an acceptable linearity range. The flower-shaped (μPADs) provides many advantages, including low cost, reasonable sensitivity, simple and fast performance, simultaneous detection, disposable use, and high sample throughput compared with conventional colorimetric method using cuvette cells. The ratios between the absorbance wavelength at (A650/A525) and (A685/A525) are linearly proportional to the concentration of Arg and Val. Under the optimum conditions, the calibration range in aqueous solutions is 0.0068–100.0 and 0.0056–75.0 µM with a limit of detection of 2.25 and 1.86 nM for Arg and Val at pH 7.0, respectively. In the case of μPADs, the calibration curves for Arg and Val showed good linearity in the concentration range 0.01–75.0 µM. The detection limits for the analytes were 3.51 nM and 3.44 nM for Arg and Val, respectively. In addition, a PMMA/paper hybrid microfluidic chip was successfully employed to determine Arg and Val in plasma samples with a relative error below 5%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Van de Rest O, Van Der Zwaluw NL, De Groot LC (2013) Literature review on the role of dietary protein and amino acids in cognitive functioning and cognitive decline. Amino Acids 45:1035–1045. https://doi.org/10.1007/s00726-013-1583-0

    Article  CAS  PubMed  Google Scholar 

  2. Song Y, Xu C, Kuroki H, Liao Y, Tsunoda M (2018) Recent trends in analytical methods for the determination of amino acids in biological samples. J Pharm Biomed Anal 147:35–49. https://doi.org/10.1016/j.jpba.2017.08.050

    Article  CAS  PubMed  Google Scholar 

  3. Ferre S, Gonzalez-Ruiz V, Guillarme D, Rudaz S (2019) Analytical strategies for the determination of amino acids: Past, present and future trends. J Chromatogr B 1132:121819. https://doi.org/10.1016/j.jchromb.2019.121819

    Article  CAS  Google Scholar 

  4. https://www.mayocliniclabs.com/test-catalog/Overview/9265. Test ID: AAQP.

  5. Stasyuk NE, Gaida GZ, Gonchar MV (2013) L-arginine assay with the use of arginase I. Appl Biochem Microbiol 49:529–534. https://doi.org/10.1134/S000368381305013X

    Article  CAS  Google Scholar 

  6. Cao J, Ding L, Hu W, Chen X, Chen X, Fang Y (2014) Ternary system based on fluorophore–surfactant assemblies Cu2+ for highly sensitive and selective detection of arginine in aqueous solution. Langmuir 30:15364–15372. https://doi.org/10.1021/la5039798

    Article  CAS  PubMed  Google Scholar 

  7. Ma C, Wang J, Zhu Y, Wu Y, Li T, Liu LM (2021) L-Arginine, as an important metabolic biomarker. participates in the pathological process of chronic obstructive pulmonary disease.. preprints@lancet.com https://doi.org/10.2139/ssrn.3917050

  8. Batcha BC, Hyland K, Svetkey LP (2014) Branch chain amino acids: biomarkers of health and disease. Curr Opin Clin Nutr Metab Care 17:86–89. https://doi.org/10.1097/MCO.0000000000000010

    Article  CAS  Google Scholar 

  9. Zhang L, Liu Y, Chen G (2004) Simultaneous determination of allantoin, choline and L-arginine in Rhizoma Dioscoreae by capillary electrophoresis. J Chromatogr A 1043:317–321. https://doi.org/10.1016/j.chroma.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  10. Tuma P, Gojda J, Sommerova B, Koval D (2020) Measuring venous-arterial differences of valine, isoleucine, leucine, alanine and glutamine in skeletal muscles using counter-current electrophoresis with contactless conductivity detection. J Electroanal Chem 857:113772. https://doi.org/10.1016/j.jelechem.2019.113772

    Article  CAS  Google Scholar 

  11. Mao HM, Wei W, Xiong WJ, Lu Y, Chen BG, Liu Z (2010) Simultaneous determination of l-citrulline and l-arginine in plasma by high performance liquid chromatography. Clin Biochem 43:1141–1147. https://doi.org/10.1016/j.clinbiochem.2010.05.017

    Article  CAS  PubMed  Google Scholar 

  12. Yegorova AV, Fedosenko GA, Maltsev GV, Kashutskyy SN, Antonovich VP (2017) HPLC determination of L-valine L-leucine and L-isoleicin using pre-column derivatization by di-tret-butyl-dicarbonate. Methods 12:91–98. https://doi.org/10.17721/moca.2017.91-98

    Article  CAS  Google Scholar 

  13. Balasurya S, Syed A, Thomas AM, Bahkali AH, Elgorban AM, Raju LL, Khan SS (2020) Highly sensitive and selective colorimetric detection of arginine by polyvinylpyrrolidone functionalized silver nanoparticles. J Mol Liq 300:112361. https://doi.org/10.1016/j.molliq.2019.112361

    Article  CAS  Google Scholar 

  14. Deore BA, Shiigi H, Nagaoka T (2002) Pulsed amperometric detection of underivatized amino acids using polypyrrole modified copper electrode in acidic solution. Talanta 58:1203–12011. https://doi.org/10.1016/S0039-9140(02)00204-7

    Article  CAS  PubMed  Google Scholar 

  15. Vishwanathan K, Tackett RL, Stewart JT, Bartlett MG (2000) Determination of arginine and methylated arginines in human plasma by liquid chromatography–tandem mass spectrometry. J Chromatogr B Biomed Sci App 748:157–166. https://doi.org/10.1016/S0378-4347(00)00399-6

    Article  CAS  Google Scholar 

  16. Williams J, Lang D, Smith JA, Lewis MJ (1993) Plasma L-arginine levels in a rabbit model of hypercholesterolaemia. Biochem Pharmacol 46:2097–2099. https://doi.org/10.1016/0006-2952(93)90653-E

    Article  CAS  PubMed  Google Scholar 

  17. Deng C, Deng Y (2003) Diagnosis of maple syrup urine disease by determination of L-valine, L-isoleucine, L-leucine and L-phenylalanine in neonatal blood spots by gas chromatography-mass spectrometry. J Chromatogr B 792:261–268. https://doi.org/10.1016/S1570-0232(03)00270-8

    Article  CAS  Google Scholar 

  18. Mohammadi A, Khoshsoroor S, Khalili B (2019) Rapid, sensitive and selective detection of arginine using a simple azo-based colorimetric and fluorescent chemosensor. J Photochem Photobiol A 384:112035. https://doi.org/10.1016/j.jphotochem.2019.112035

    Article  CAS  Google Scholar 

  19. Gao J, Li Q, Yang W, Liu X, Ren J, Yang H, Deng H (2002) Determination of L-valine based on an oscillating chemical reaction. Electroanalysis 14:1191–1196. https://doi.org/10.1002/1521-4109(200209)14:17%3c1191::AID-ELAN1191%3e3.0.CO;2-9

    Article  CAS  Google Scholar 

  20. Saxena OC (1970) Direct titrimetric micro determination of L-arginine: I. Direct estimations of L-arginine and DL-valine, and L-arginine and DL-alanine; and L-arginine, DL-valine, and DL-alanine together in one solution without separating. Microchem J 15:391–398. https://doi.org/10.1016/0026-265X(70)90124-4

    Article  CAS  Google Scholar 

  21. Rawat KA, Kailasa SK (2016) 4-Amino nicotinic acid mediated synthesis of gold nanoparticles for visual detection of arginine, histidine, methionine and tryptophan. Sens Actuators B Chem 222:780–789. https://doi.org/10.1016/j.snb.2015.09.003

    Article  CAS  Google Scholar 

  22. Rawat KA, Kailasa SK (2014) Visual detection of arginine, histidine and lysine using quercetin-functionalized gold nanoparticles. Microchim Acta 181:1917–1929. https://doi.org/10.1007/s00604-014-1294-6

    Article  CAS  Google Scholar 

  23. Patel G, Menon S (2009) Recognition of lysine, arginine and histidine by novel p-sulfonatocalix [4] arene thiol functionalized gold nanoparticles in aqueous solution. Chem Comm 24:3563–3565. https://doi.org/10.1039/B905141D

    Article  Google Scholar 

  24. Kailasa SK, Desai ML, Baek SH, Nguyen TP, Rafique R, Park TJ (2019) Independent spectral characteristics of functionalized silver nanoparticles for colorimetric assay of arginine and spermine in biofluids. New J Chem 43:17069–17077. https://doi.org/10.1039/C9NJ04132J

    Article  CAS  Google Scholar 

  25. Velugula K, Chinta JP (2017) Silver nanoparticles ensemble with Zn (II) complex of terpyridine as a highly sensitive colorimetric assay for the detection of Arginine. Biosens Bioelectron 87:271–277. https://doi.org/10.1016/j.bios.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  26. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem 119:1340–1342. https://doi.org/10.1002/ange.200603817

    Article  Google Scholar 

  27. Selvakumar B, Kathiravan A (2021) Sensory materials for microfluidic paper based analytical devices-a review. Talanta 235:122733. https://doi.org/10.1016/j.talanta.2021.122733

    Article  CAS  PubMed  Google Scholar 

  28. Faham S, Khayatian G, Golmohammadi H, Ghavami R (2018) A paper-based optical probe for chromium by using gold nanoparticles modified with 2,2′-thiodiacetic acid and smartphone camera readout. Microchim Acta 185:374–382. https://doi.org/10.1007/s00604-018-2875-6

    Article  CAS  Google Scholar 

  29. Shariati S, Khayatian G (2021) The colorimetric and microfluidic paper-based detection of cysteine and homocysteine using 1, 5-diphenylcarbazide-capped silver nanoparticles. RSC Adv 11:3295–3303. https://doi.org/10.1039/D0RA08615K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin CH, Chao CH, Lan CW (2007) Low azeotropic solvent for bonding of PMMA microfluidic devices. Sens Actuators B Chem 121:698–705. https://doi.org/10.1016/j.snb.2006.04.086

    Article  CAS  Google Scholar 

  31. Lynh HD, Pin-Chuan C (2018) Novel solvent bonding method for creation of a three-dimensional, non-planar, hybrid PLA/PMMA microfluidic chip. Sens Actuator A Phys 280:350–358. https://doi.org/10.1016/j.sna.2018.08.002

    Article  CAS  Google Scholar 

  32. Lankelma J, Penders PG, Leyva A, Pinedo HM (1981) Determination of thioproline in plasma using high performance liquid chromatography. Cancer Lett 12:131–137. https://doi.org/10.1016/0304-3835(81)90048-3

    Article  CAS  PubMed  Google Scholar 

  33. Alex S, Tiwari A (2015) Functionalized gold nanoparticles: synthesis, properties and applications-a review. J Nanosci Nanotechnol 15:1869–1894. https://doi.org/10.1166/jnn.2015.9718

    Article  CAS  PubMed  Google Scholar 

  34. PKa and pI values of amino acids, www.peptideweb.com

  35. Fan XC, Wang Q (2019) Sensitive determination of arginine based on hydrogen bonding by a surface plasmon resonance (SPR) sensor. Instrum Sci Technol 48:196–211. https://doi.org/10.1080/10739149.2019.1680385

    Article  CAS  Google Scholar 

  36. Zhang J, Zhu C, Zhou F, Ma L (2018) Adsorption behavior and kinetics for L-valine separation from aqueous solution using ion exchange resin. React Funct Polym 130:51–60. https://doi.org/10.1016/j.reactfunctpolym.2018.05.010

    Article  CAS  Google Scholar 

  37. Dong L, Chu W, Zhu Q, Huang R (2011) Three Novel Homochiral Helical Metal-Organic Frameworks Based on Amino Acid Ligand: Syntheses, Crystal Structures, and Properties. Cryst Growth Des 11:93–99. https://doi.org/10.1021/cg1009175

    Article  CAS  Google Scholar 

  38. Singh N, Patel K, Sahoo SK, Pati RK, Kumar R (2017) Gastrointestinal tract mechanism of nitrite capture modeled on the self assembled monolayer of thioproline for electrochemical nitrite determination. J Mater Chem A 5:3389–3403. https://doi.org/10.1039/C6TA10183F

    Article  CAS  Google Scholar 

  39. Weber HU, Fleming JF, Miquel J (1982) Thiazolidine-4-carboxylic acid, a physiologic sulfhydryl antioxidant with potential value in geriatric medicine. Arch Gerontol Geriatr 1:299–310. https://doi.org/10.1016/0167-4943(82)90030-9

    Article  CAS  PubMed  Google Scholar 

  40. Butvin P, Svetlik J, Taligova D (1998) Complex Formation of Selected Trivalent Metal Ions with (4R)-Thiazolidine-4-carboxylic Acid and Some of its Derivatives. Chem Pap 52:205–210

    CAS  Google Scholar 

  41. Liu T, Li N, Dong JX, Zhang Y, Fan YZ, Lin SM, Luo HQ, Li NB (2017) A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite. Biosens Bioelectron 87:772–778. https://doi.org/10.1016/j.bios.2016.08.098

    Article  CAS  PubMed  Google Scholar 

  42. Pu W, Zhao H, Huang C, Wu L, Xu D (2013) Visual detection of arginine based on the unique guanidino group-induced aggregation of gold nanoparticles. Anal Chim Acta 764:78–83. https://doi.org/10.1016/j.aca.2012.12.026

    Article  CAS  PubMed  Google Scholar 

  43. Aliyu HN, NaAliya J (2009) Determination and stability constants of manganese (II) amino acid complexes. Bayero J pure Appl Sci 2:191–193. https://doi.org/10.4314/bajopas.v2i2.63811

    Article  Google Scholar 

  44. Murphy JM, Powell BA, Brumaghim JL (2020) Stability constants of bio-relevant, redox-active metals with amino acids: the challenges of weakly binding ligands. Coord Chem Rev 412:213253. https://doi.org/10.1016/j.ccr.2020.213253

    Article  CAS  Google Scholar 

  45. Madsen HL, Christensen HH, Gottlieb-Petersen C (1978) Stability constants of copper (II), zinc, manganese (II), calcium, and magnesium complexes of N-(phosphonomethyl) glycine (glyphosate). Acta Chem Scand A 32:79–83

    Article  Google Scholar 

  46. Schwarz EL, Roberts WL, Pasquali M (2005) Analysis of plasma amino acids by HPLC with photodiode array and fluorescence detection. Clin Chim Acta 354:83–90. https://doi.org/10.1016/j.cccn.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  47. Ziegler F, Le Boucher J, Coudray-Lucas C, Cynober L (1992) Plasma amino-acid determinations by reversed-phase HPLC: improvement of the orthophthalaldehyde method and comparison with ion exchange chromatography. J Automat Chem 14:145–149. https://doi.org/10.1155/S1463924692000270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deng Y, Chen R, Hu T, Yao J, Wang J (2017) Simultaneous determination of arginine and citrulline in gourd fruits and melons by high performance liquid chromatography with electrochemical detection. Food Anal Methods 10:1369–1376. https://doi.org/10.1007/s12161-016-0694-0

    Article  Google Scholar 

  49. Laurenciano CJ, Tseng CC, Chen SJ, Lu SY, Tayo LL, Fu LM (2021) Microfluidic colorimetric detection platform with sliding hybrid PMMA/paper microchip for human urine and blood sample analysis. Talanta 231:122362. https://doi.org/10.1016/j.talanta.2021.122362

    Article  CAS  PubMed  Google Scholar 

  50. Sanjay ST, Li M, Zhou W, Li X, Li X (2020) A reusable PMMA/paper hybrid plug-and-play microfluidic device for an ultrasensitive immunoassay with a wide dynamic range. Microsyst Nanoeng 6:1–11. https://doi.org/10.1038/s41378-020-0143-5

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support for this study from the University of Kurdistan, Sanandaj, IRAN (Grant Number 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Khayatian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9104 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, H., Khayatian, G. PMMA/paper hybrid microfluidic chip for simultaneous determination of arginine and valine in human plasma. Microchim Acta 189, 370 (2022). https://doi.org/10.1007/s00604-022-05464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05464-6

Keywords

Navigation