Skip to main content
Log in

Thiacalix[4]arene-based complex with Co(II) ions as electrode modifier for simultaneous electrochemical determination of Cd(II), Pb(II), and Cu(II)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A complex [Co4(TCTA)2(H2O)8]∙10H2O (Co-TCTA) based on thiacalix[4]arene derivative has been synthesized for the first time using the solvothermal method. The glassy carbon electrode (GCE) modified with Co-TCTA (Co-TCTA/GCE) could simultaneously determine Cd2+, Pb2+, and Cu2+ at around − 0.75 V, − 0.60 V, and − 0.10 V (vs. ref. Ag/AgCl) and had good stability, selectivity, and reproducibility with relative standard deviation (RSD) of 4.4% for Cd2+, 1.4% for Pb2+, and 5.4% for Cu2+. Co-TCTA/GCE showed wide linear range of 0.4–8.0 μM for Cd2+, 0.4–7.0 μM for Pb2+, and 0.6–6.0 μM for Cu2+ when three ions were determined simultaneously. The limits of detection (LODs) of Cd2+, Pb2+, and Cu2+ were 0.071 μM, 0.022 μM, and 0.021 μM, respectively. Moreover, the sensor was used to determine three ions in lake water sample with satisfactory recoveries of 93.6–93.8% for Cd2+, 93.8–103.3% for Pb2+ and 94.6–95.3% for Cu2+. The good adsorption capacity of Co-TCTA and Co(II)/Co(0) circular mechanism on the surface of the electrode were proposed to enhance the electrochemical signals. This work enriched the theoretical research on the complexes for the determination of heavy metal ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 17:1495–1521. https://doi.org/10.1016/j.synthmet.2020.116410

    Article  CAS  Google Scholar 

  2. Lebedev A, Sinikova N, Nikolaeva S, Poliakova O, Khrushcheva M, Pozdnyakov S (2003) Metals and organic pollutants in snow surrounding an iron factory. Environ Chem Lett 1:107–112. https://doi.org/10.1007/s10853-021-05815-3

    Article  CAS  Google Scholar 

  3. Ding Q, Li C, Wang H, Xu C, Kuang H (2021) Electrochemical detection of heavy metal ions in water. Chem Commun 57:7215–7231. https://doi.org/10.1039/d1cc00983d

    Article  CAS  Google Scholar 

  4. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249. https://doi.org/10.1021/ac5039863

    Article  CAS  PubMed  Google Scholar 

  5. Lu Y, Liang X, Niyungeko C, Zhou J, Xu J, Tian G (2018) A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 178:324–338. https://doi.org/10.1016/j.talanta.2017.08.033

    Article  CAS  PubMed  Google Scholar 

  6. Jin J-C, Wu J, Yang G-P, Wu Y-L, Wang Y-Y (2016) A microporous anionic metal-organic framework for a highly selective and sensitive electrochemical sensor of Cu2+ ions. Chem Commun 52:8475–8478. https://doi.org/10.1039/c6cc03063g

    Article  CAS  Google Scholar 

  7. Yang M, Chen X, Jiang TJ, Guo Z, Liu JH, Huang XJ (2016) Electrochemical detection of trace arsenic(III) by nanocomposite of nanorod-like α-MnO2 decorated with ~ 5 nm Au nanoparticles: considering the change of arsenic speciation. Anal Chem 88(19):9720–9728. https://doi.org/10.1021/acs.analchem.6b02629

    Article  CAS  PubMed  Google Scholar 

  8. Hutton LA, O’Neil GD, Read TL, Ayres ZJ, Newton ME, Macpherson JV (2014) Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude. Anal Chem 86(9):4566–4572. https://doi.org/10.1021/ac500608d

    Article  CAS  PubMed  Google Scholar 

  9. Xuan X, Park JY (2018) A miniaturized and flexible cadmium and lead ion detection sensor based on micro-patterned reduced graphene oxide/carbon nanotube/bismuth composite electrodes. Sens Actuators B 255:1220–1227. https://doi.org/10.1016/j.snb.2017.08.046

    Article  CAS  Google Scholar 

  10. Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286. https://doi.org/10.1016/j.bios.2014.07.052

    Article  CAS  PubMed  Google Scholar 

  11. Chen L, Ju H, Zeng X, He X, Zhang Z (2001) Silver ion-selective electrodes based on novel containing benzothiazolyl calix[4]arene. Anal Chim Acta 437:191–197. https://doi.org/10.1016/s0003-2670(01)00994-1

    Article  CAS  Google Scholar 

  12. Li J, Du P, Liu Y-Y, Ma J-F (2021) Assembly of polyoxometalate-thiacalix[4]arene-based inorganic-organic hybrids as efficient catalytic oxidation desulfurization catalysts. Dalton Trans 50:1349–1356. https://doi.org/10.1039/d0dt04097e

    Article  CAS  PubMed  Google Scholar 

  13. Liu C, Pei W-Y, Li J-F, Yang J, Ma J-F (2020) Calix[4]arene-based [Co4] complex/ordered mesoporous carbon as a high-performance electrocatalyst for efficient detection of baicalein. Sens Actuators B 308:127677. https://doi.org/10.1016/j.snb.2020.127677

    Article  CAS  Google Scholar 

  14. Pan Y-C, Hu X-Y, Guo D-S (2021) Biomedical applications of calixarenes: state of the art and perspectives. Angew Chem Int Ed 60:2768–2794. https://doi.org/10.1002/anie.201916380

    Article  CAS  Google Scholar 

  15. Ahmadijokani F, Tajahmadi S, Bahi A, Molavi H, Rezakazemi M, Ko F, Aminabhavi TM, Arjmand M (2021) Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water. Chemosphere 264:128466. https://doi.org/10.1016/j.chemosphere.2020.128466

    Article  CAS  PubMed  Google Scholar 

  16. Wang F-F, Liu C, Yang J, Xu H-L, Pei W-Y, Ma J-F (2022) A sulfur-containing capsule-based metal-organic electrochemical sensor for super-sensitive capture and detection of multiple heavy-metal ions. Chem Eng J 438:135639. https://doi.org/10.1016/j.cej.2022.135639

    Article  CAS  Google Scholar 

  17. Li S-S, Zhou W-Y, Jiang M, Guo Z, Liu J-H, Zhang L, Huang X-J (2018) Surface Fe(II)/Fe(III) cycle promoted ultra-highly sensitive electrochemical sensing of arsenic(III) with dumbbell-like Au/Fe3O4 nanoparticles. Anal Chem 90:4569–4577. https://doi.org/10.1021/acs.analchem.7b04981

    Article  CAS  PubMed  Google Scholar 

  18. Sun Y-F, Jian W, Li P-H, Yang M, Huang X-J (2019) Highly sensitive electrochemical detection of Pb(II) based on excellent adsorption and surface Ni(II)/Ni(III) cycle of porous flower-like NiO/rGO nanocomposite. Sens Actuators B 292:136–147. https://doi.org/10.1016/j.snb.2019.04.131

    Article  CAS  Google Scholar 

  19. Lhoták P, Šťastný V, Zlatušková P, Stibor I, Michlová V, Tkadlecová M, Havlíček J, Sýkora J (2000) Synthesis and 1H NMR complexation study of thiacalix[4]arene tetraacetates. Collect Czech Chem Commun 65:757–771. https://doi.org/10.1135/cccc20000757

    Article  Google Scholar 

  20. Iki N, Narumi F, Fujimoto T, Morohashi N, Miyano S (1998) Selective synthesis of three conformational isomers of tetrakis[(ethoxycarbonyl)methoxy]thiacalix[4]arene and their complexation properties towards alkali metal ions. J Chem Soc Perkin Trans 2:2745–2750. https://doi.org/10.1039/A803734E

    Article  Google Scholar 

  21. Wang L, Wang X, Shi G, Peng C, Ding Y (2012) Thiacalixarene covalently functionalized multiwalled carbon nanotubes as chemically modified electrode material for detection of ultratrace Pb2+ ions. Anal Chem 84:10560–10567. https://doi.org/10.1021/ac302747f

    Article  CAS  PubMed  Google Scholar 

  22. Sutton CC, Franks GV, da Silva G (2015) Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions. Spectrochim Acta part A 134:535–542. https://doi.org/10.1016/j.saa.2014.06.062

    Article  CAS  Google Scholar 

  23. Ye W, Li Y, Wang J, Li B, Cui Y, Yang Y, Qian G (2020) Electrochemical detection of trace heavy metal ions using a Ln-MOF modified glass carbon electrode. J Solid State Chem 281:121032. https://doi.org/10.1016/j.jssc.2019.121032

    Article  CAS  Google Scholar 

  24. Wei Y, Gao C, Meng F-L, Li H-H, Wang L, Liu J-H, Huang X-J (2012) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J Phys Chem C 116L:1034–1041. https://doi.org/10.1021/jp209805c

    Article  CAS  Google Scholar 

  25. Xiao L, Xu H, Zhou S, Song T, Wang H, Li S, Gan W, Yuan Q (2014) Simultaneous detection of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode. Electrochim Acta 143:143–151. https://doi.org/10.1016/j.electacta.2014.08.021

    Article  CAS  Google Scholar 

  26. Zhu X, Liu B, Hou H, Huang Z, Zeinu KM, Huang L, Yuan X, Guo D, Hu J, Yang J (2017) Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim Acta 248:46–57. https://doi.org/10.1016/j.electacta.2017.07.084

    Article  CAS  Google Scholar 

  27. Wang Q, Yang Y, Gao F, Ni J, Zhang Y, Lin Z (2016) Graphene oxide directed one-step synthesis of flowerlike graphene@HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples. ACS Appl Mater Interfaces 8(47):32477–32487. https://doi.org/10.1021/acsami.6b11965

    Article  CAS  PubMed  Google Scholar 

  28. Niu X, Pei WY, Ma J-C, Yang J, Ma J-F (2022) Simultaneous electrochemical detection of gallic acid and uric acid with p-tert-butylcalix[4]arene-based coordination polymer/mesoporous carbon composite. Microchim Acta 189(3):93. https://doi.org/10.1007/s00604-022-05201-z

    Article  CAS  Google Scholar 

  29. Ye C, Xu F, Ullah F, Wang M (2022) CdS/Ti3C2 heterostructure-based photoelectrochemical platform for sensitive and selective detection of trace amount of Cu2+. Anal Bioanal Chem 414(12):3571–3580. https://doi.org/10.1007/s00216-021-03870-y

    Article  CAS  PubMed  Google Scholar 

  30. Ngoensawat U, Pisuchpen T, Sritana-Anant Y, Rodthongkum N, Hoven VP (2022) Conductive electrospun composite fibers based on solid-state polymerized Poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of metal ions. Talanta 241:123253. https://doi.org/10.1016/j.talanta.2022.123253

    Article  CAS  PubMed  Google Scholar 

  31. Cheng B, Zhou L, Lu L, Liu J, Dong X, Xi F, Chen P (2018) Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sens Actuators B 259:364–371. https://doi.org/10.1016/j.snb.2017.12.083

    Article  CAS  Google Scholar 

  32. Guo Z, Li D-D, Luo X-K, Li Y-H, Zhao Q-N, Li M-M, Zhao Y-T, Sun T-S, Ma C (2017) Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode. J Colloid Interface Sci 490:11–22. https://doi.org/10.1016/j.jcis.2016.11.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by National Natural Science Foundation of China (22001032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Yang or Jian-Fang Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2742 KB)

Supplementary file2 (CIF 1297 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XT., Niu, X., Yang, J. et al. Thiacalix[4]arene-based complex with Co(II) ions as electrode modifier for simultaneous electrochemical determination of Cd(II), Pb(II), and Cu(II). Microchim Acta 189, 344 (2022). https://doi.org/10.1007/s00604-022-05456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05456-6

Keywords

Navigation