Skip to main content
Log in

Ratiometric fluorescence and visual determination of tetracycline antibiotics based on Y3+ and copper nanoclusters–induced cascade signal amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A ratiometric fluorescence probe is proposed for sensitive and visual detection of tetracyclinee (TC) based on cascade fluorescence signal amplification induced by bovine serum albumin–stabilized copper nanoclusters (BSA-CuNCs) and yttrium ions (Y3+). TC can combine with Y3+ to form the complex (TC-Y3+) to enhance the fluorescence of TC at 515 nm. Then, positively charged TC-Y3+ and negatively charged BSA-CuNCs was bonded together by electrostatic interactions to achieve the fluorescence resonance energy transfer (FRET) process. With the increase of TC concentration, the fluorescence intensity of TC-Y3+ at 515 nm (F515) gradually increased; meanwhile, the fluorescence intensity of BSA-CuNCs at 405 nm (F405) decreased gradually. The ratio of F515 and F405 was used for the quantitative determination of TC. The linear range of the constructed fluorescent probe is 1.0 to 60.0 μM, and the limit of detection is 0.22 μM. The method was successfully applied to the determination of TC in spiked milk with recoveries ranging from 94.3 to 112%. Furthermore, the color of this platform can be observed from dark violet to bright green under the UV lamp. Since the response time of the reaction is less than 10 s, an intelligent sensing platform based on the use of the smartphone as image acquisition equipment was also established to realize rapid on-site and portable detection of TC through the colorimetric recognition application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fu Q, Long C, Qin L, Jiang Z, Qing T, Zhang P, Feng B (2021) Fluorescent and colorimetric dual-mode detection of tetracycline in wastewater based on heteroatoms-doped reduced state carbon dots. Environ Pollut (Barking, Essex 1987) 283:117109. https://doi.org/10.1016/j.envpol.2021.117109

    Article  CAS  Google Scholar 

  2. Liu Y, Xiao Y, Yu M, Cao Y, Zhang Y, Zhe T, Zhang H, Wang L (2020) Antimonene quantum dots as an emerging fluorescent nanoprobe for the pH-mediated dual-channel detection of tetracyclines. Small 16:e2003429. https://doi.org/10.1002/smll.202003429

    Article  CAS  PubMed  Google Scholar 

  3. Li C, Zhu L, Yang W, He X, Zhao S, Zhang X, Tang W, Wang J, Yue T, Li Z (2019) Amino-functionalized Al-MOF for fluorescent detection of tetracyclines in milk. J Agric Food Chem 67:1277–1283. https://doi.org/10.1021/acs.jafc.8b06253

    Article  CAS  PubMed  Google Scholar 

  4. Gan Z, Hu X, Xu X, Zhang W, Zou X, Shi J, Zheng K, Arslan M (2021) A portable test strip based on fluorescent europium-based metal-organic framework for rapid and visual detection of tetracycline in food samples. Food Chem 354:129501. https://doi.org/10.1016/j.foodchem.2021.129501

    Article  CAS  PubMed  Google Scholar 

  5. (2009) Commission Regulation (EU) No 37/2010. Official Journal of the European Union L.

  6. Deng B, Xu Q, Lu H, Ye L, Wang Y (2012) Pharmacokinetics and residues of tetracycline in crucian carp muscle using capillary electrophoresis on-line coupled with electrochemiluminescence detection. Food Chem 134:2350–2354. https://doi.org/10.1016/j.foodchem.2012.03.117

    Article  CAS  PubMed  Google Scholar 

  7. Pang Y-H, Lv Z-Y, Sun J-C, Yang C, Shen X-F (2021) Collaborative compounding of metal-organic frameworks for dispersive solid-phase extraction HPLC-MS/MS determination of tetracyclines in honey. Food Chem 355:129411. https://doi.org/10.1016/j.foodchem.2021.129411

    Article  CAS  PubMed  Google Scholar 

  8. Bajkacz S, Felis E, Kycia-Słocka E, Harnisz M, Korzeniewska E (2020) Development of a new SLE-SPE-HPLC-MS/MS method for the determination of selected antibiotics and their transformation products in anthropogenically altered solid environmental matrices. Sci Total Environ 726:138071. https://doi.org/10.1016/j.scitotenv.2020.138071

    Article  CAS  PubMed  Google Scholar 

  9. Gong X, Li X, Qing T, Zhang P, Feng B (2019) Amplified colorimetric detection of tetracycline based on an enzyme-linked aptamer assay with multivalent HRP-mimicking DNAzyme. Analyst 144:1948–1954. https://doi.org/10.1039/C8AN02284D

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Wang Y, Jia L, Bi N, Bie H, Chen X, Zhang C, Xu J (2021) Ultrasensitive and visual detection of tetracycline based on dual-recognition units constructed multicolor fluorescent nano-probe. J Hazard Mater 409:124935. https://doi.org/10.1016/j.jhazmat.2020.124935

    Article  CAS  PubMed  Google Scholar 

  11. Li W, Zhu J, Xie G, Ren Y, Zheng Y-Q (2018) Ratiometric system based on graphene quantum dots and Eu3+ for selective detection of tetracyclines. Anal Chim Acta 1022:131–137. https://doi.org/10.1016/j.aca.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  12. Wang T, Wei X, Zong Y, Zhang S, Guan W (2020) An efficient and stable fluorescent sensor based on APTES-functionalized CsPbBr 3 perovskite quantum dots for ultrasensitive tetracycline detection in ethanol. J Mater Chem C 8:12196–12203. https://doi.org/10.1039/d0tc02852e

    Article  CAS  Google Scholar 

  13. Wang C, Chen Da, Yang Y, Tang S, Li X, Xie F, Wang G, Guo Q (2021) Synthesis of multi-color fluorine and nitrogen co-doped graphene quantum dots for use in tetracycline detection, colorful solid fluorescent ink, and film. J Colloid Interface Sci 602:689–698. https://doi.org/10.1016/j.jcis.2021.06.062

    Article  CAS  PubMed  Google Scholar 

  14. Yu J, Liu H, Wang Y, Li J, Wu D, Wang X (2021) Fluorescent sensing system based on molecularly imprinted phase-change microcapsules and carbon quantum dots for high-efficient detection of tetracycline. J Colloid Interface Sci 599:332–350. https://doi.org/10.1016/j.jcis.2021.04.094

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Y, Yang Q, Zhang D, Gan N, Li Q, Cuan J (2018) Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sens Actuators, B Chem 262:137–143. https://doi.org/10.1016/j.snb.2018.01.218

    Article  CAS  Google Scholar 

  16. Li C, Zeng C, Chen Z, Jiang Y, Yao H, Yang Y, Wong W-T (2020) Luminescent lanthanide metal-organic framework test strip for immediate detection of tetracycline antibiotics in water. J Hazard Mater 384:121498. https://doi.org/10.1016/j.jhazmat.2019.121498

    Article  CAS  PubMed  Google Scholar 

  17. Han L, Fan YZ, Qing M, Liu SG, Yang YZ, Li NB, Luo HQ (2020) Smartphones and test paper-assisted ratiometric fluorescent sensors for semi-quantitative and visual assay of tetracycline based on the target-induced synergistic effect of antenna effect and inner filter effect. ACS Appl Mater Interfaces 12:47099–47107. https://doi.org/10.1021/acsami.0c15482

    Article  CAS  PubMed  Google Scholar 

  18. Chu S, Wang H, Du Y, Yang F, Yang L, Jiang C (2020) Portable smartphone platform integrated with a nanoprobe-based fluorescent paper strip: visual monitoring of glutathione in human serum for health prognosis. ACS Sustainable Chem Eng 8:8175–8183. https://doi.org/10.1021/acssuschemeng.0c00690

    Article  CAS  Google Scholar 

  19. Zhan Y, Yang S, Chen L, Zeng Y, Li L, Lin Z, Guo L, Xu W (2021) Ultrahigh efficient FRET ratiometric fluorescence biosensor for visual detection of alkaline phosphatase activity and its inhibitor. ACS Sustainable Chem Eng 9:12922–12929. https://doi.org/10.1021/acssuschemeng.1c03830

    Article  CAS  Google Scholar 

  20. Yang K, Jia P, Hou J, Bu T, Sun X, Liu Y, Wang L (2020) Innovative dual-emitting ratiometric fluorescence sensor for tetracyclines detection based on boron nitride quantum dots and europium ions. ACS Sustainable Chem Eng 8:17185–17193. https://doi.org/10.1021/acssuschemeng.0c05872

    Article  CAS  Google Scholar 

  21. Xu J, Guo S, Jia L, Zhu T, Chen X, Zhao T (2021) A smartphone-integrated method for visual detection of tetracycline. Chem Eng J 416:127741. https://doi.org/10.1016/j.cej.2020.127741

    Article  CAS  Google Scholar 

  22. Meng L, Lan C, Liu Z, Xu N, Wu Y (2019) A novel ratiometric fluorescence probe for highly sensitive and specific detection of chlorotetracycline among tetracycline antibiotics. Anal Chim Acta 1089:144–151. https://doi.org/10.1016/j.aca.2019.08.065

    Article  CAS  PubMed  Google Scholar 

  23. Fan Y, Yu W, Liao Y, Jiang X, Wang Z, Cheng Z (2022) Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters. Spectrochimi Acta Part A, Mol Biomol Spectrosc 267:120509. https://doi.org/10.1016/j.saa.2021.120509

    Article  CAS  Google Scholar 

  24. Ding L, Zhao Y, Li H, Zhang Q, Yang W, Fu B, Pan Q (2021) A highly selective ratiometric fluorescent probe for doxycycline based on the sensitization effect of bovine serum albumin. J Hazard Mater 416:125759. https://doi.org/10.1016/j.jhazmat.2021.125759

    Article  CAS  PubMed  Google Scholar 

  25. Han S, Yang L, Wen Z, Chu S, Wang M, Wang Z, Jiang C (2020) A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline. J Hazard Mater 398:122894. https://doi.org/10.1016/j.jhazmat.2020.122894

    Article  CAS  PubMed  Google Scholar 

  26. Qing T, Zhang K, Qing Z, Wang X, Long C, Zhang P, Hu H, Feng B (2019) Recent progress in copper nanocluster-based fluorescent probing: a review. Microchim Acta 186:670. https://doi.org/10.1007/s00604-019-3747-4

    Article  CAS  Google Scholar 

  27. Aparna RS, Anjali Devi JS, John N, Abha K, Syamchand SS, George S (2018) Blue emitting copper nanoclusters as colorimetric and fluorescent probe for the selective detection of bilirubin. Spectrochimi Acta Part A, Mole Biomole Spectrosc 199:123–129. https://doi.org/10.1016/j.saa.2018.03.045

    Article  CAS  Google Scholar 

  28. Thanasarakhan W, Kruanetr S, Deming RL, Liawruangrath B, Wangkarn S, Liawruangrath S (2011) Sequential injection spectrophotometric determination of tetracycline antibiotics in pharmaceutical preparations and their residues in honey and milk samples using yttrium (III) and cationic surfactant. Talanta 84:1401–1409. https://doi.org/10.1016/j.talanta.2011.03.087

    Article  CAS  PubMed  Google Scholar 

  29. Karthikeyan G, Mohanraj K, Elango KP, Girishkumar K (2004) Synthesis, spectroscopic characterization and antibacterial activity of lanthanide–tetracycline complexes. Transition Met Chem 29:86–90. https://doi.org/10.1023/B:TMCH.0000014490.54611.5a

    Article  CAS  Google Scholar 

  30. Miao Z, Hou W, Liu M, Zhang Y, Yao S (2018) BSA capped bi-functional fluorescent Cu nanoclusters as pH sensor and selective detection of dopamine. New J Chem 42:1446–1456. https://doi.org/10.1039/C7NJ03524A

    Article  CAS  Google Scholar 

  31. Jia L, Chen R, Xu J, Zhang L, Chen X, Bi N, Gou J, Zhao T (2021) A stick-like intelligent multicolor nano-sensor for the detection of tetracycline: the integration of nano-clay and carbon dots. J Hazard Mater 413:125296. https://doi.org/10.1016/j.jhazmat.2021.125296

    Article  CAS  PubMed  Google Scholar 

  32. Zhuang Y, Lin B, Yu Y, Wang Y, Zhang L, Cao Y, Guo M (2021) A ratiometric fluorescent probe based on sulfur quantum dots and calcium ion for sensitive and visual detection of doxycycline in food. Food Chem 356:129720. https://doi.org/10.1016/j.foodchem.2021.129720

    Article  CAS  PubMed  Google Scholar 

  33. Song Y, Qiao J, Liu W, Qi L (2020) Enhancement of gold nanoclusters-based peroxidase nanozymes for detection of tetracycline. Microchem J 157:104871. https://doi.org/10.1016/j.microc.2020.104871

    Article  CAS  Google Scholar 

  34. Zhang Y, Lv M, Gao P, Zhang G, Shi L, Yuan M, Shuang S (2021) The synthesis of high bright silver nanoclusters with aggregation-induced emission for detection of tetracycline. Sens Actuators, B Chem 326:129009. https://doi.org/10.1016/j.snb.2020.129009

    Article  CAS  Google Scholar 

  35. Liu X, Ma Q, Feng X, Li R, Zhang X (2021) A recycled Tb-MOF fluorescent sensing material for highly sensitive and selective detection of tetracycline in milk. Microchem J 170:106714. https://doi.org/10.1016/j.microc.2021.106714

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of the Health and Education Joint Research Project of Fujian Province (2019-wj-13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuemin Huang, Chunmei Fan or Bin Qiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 917 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, Q., You, S. et al. Ratiometric fluorescence and visual determination of tetracycline antibiotics based on Y3+ and copper nanoclusters–induced cascade signal amplification. Microchim Acta 189, 352 (2022). https://doi.org/10.1007/s00604-022-05447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05447-7

Keywords

Navigation