Skip to main content
Log in

Determination of total cathinones with a single molecularly imprinted fluorescent sensor assisted by electromembrane microextraction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electromembrane microextraction (EME)-assisted fluorescent molecularly imprinted polymer (MIP) sensing method is presented for detecting the total cathinone drugs in urine samples. In this detection system, the clean-up ability of EME eliminated the matrix effects on both target binding with MIPs and the luminescence of the fluorophore in the sensor. Moreover, by optimizing the extraction conditions of EME, different cathinone drugs with a same concentration show a same response on the single aggregation induced emission (AIE) based MIP (AIE-MIP) sensor (λex = 360 nm, λem = 467 nm). The recoveries were 57.9% for cathinone (CAT) and 78.2% for methcathinone (MCAT). The EME-assisted “light-up” AIE-MIP sensing method displayed excellent performance with a linear range of 2.0–12.0 μmol L−1 and a linear determination coefficient (R2) of 0.99. The limit of detection (LOD) value for EME-assisted “light-up” AIE-MIP sensing method was 0.3 μmol L−1. The relative standard deviation (RSD) values for the detection were found to be within the range 2.0–12.0%. To the best of our knowledge, this is the first time that determination of total illicit drugs with a single fluorescent MIP sensor was achieved and also the first utilization of sample preparation to tune the sensing signal of the sensor to be reported. We believe that this versatile combination of fluorescent MIP sensor and sample preparation can be used as a common protocol for sensing the total amount of a group of analytes in various fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grafinger KE, Liechti ME, Liakoni E (2020) Clinical value of analytical testing in patients presenting with new psychoactive substances intoxication. Br J Clin Pharmacol 86(3):429–436. https://doi.org/10.1111/bcp.14115

    Article  PubMed  Google Scholar 

  2. Ahmed SR, Chand R, Kumar S, Mittal N, Srinivasan S, Rajabzadeh AR (2020) Recent biosensing advances in the rapid detection of illicit drugs. TrAC Trends Anal Chem 131:116006. https://doi.org/10.1016/j.trac.2020.116006

    Article  CAS  Google Scholar 

  3. Xu J, Miao H, Zou L, Bui BTS, Haupt K, Pan G (2021) Evolution of molecularly imprinted enzyme inhibitors: from simple activity inhibition to pathological cell regulation. Angew Chem Int Ed 60:24526–24533. https://doi.org/10.1002/anie.202106657

    Article  CAS  Google Scholar 

  4. Ma Y, Yin Y, Ni L, Miao H, Wang Y, Pan C, Tian X, Pan J, You T, Li B, Pan G (2021) Thermo-responsive imprinted hydrogel with switchable sialic acid recognition for selective cancer cell isolation from blood. Bioact Mater 6(5):1308–1317. https://doi.org/10.1016/j.bioactmat.2020.10.008

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Sun H, Lai J, Chang X, Zhang P, Chen S (2018) Determination of carbonyl pollutants adsorbed on ambient particulate matter of type PM2.5 by using magnetic molecularly imprinted microspheres for sample pretreatment and capillary electrophoresis for separation and quantitation. Microchim Acta 185(2):122–133. https://doi.org/10.1007/s00604-017-2650-0

    Article  CAS  Google Scholar 

  6. Tu X, Shi X, Zhao M, Zhang H (2021) Molecularly imprinted dispersive solid-phase microextraction sorbents for direct and selective drug capture from the undiluted bovine serum. Talanta 226:122142. https://doi.org/10.1016/j.talanta.2021.122142

    Article  CAS  PubMed  Google Scholar 

  7. Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33:2100543. https://doi.org/10.1002/adma.202100543

    Article  CAS  Google Scholar 

  8. Arabi M, Ostovan A, Zhang Z, Wang Y, Mei R, Fu L, Wang X, Ma J, Chen L (2021) Label-free SERS detection of Raman-inactive protein biomarkers by Raman reporter indicator: Toward ultrasensitivity and universality. Biosens Bioelectron 174:112825. https://doi.org/10.1016/j.bios.2020.112825

    Article  CAS  PubMed  Google Scholar 

  9. Xing R, Guo Z, Lu H, Zhang Q, Liu Z (2021) Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity. Sci Bull 67(3):278–287. https://doi.org/10.1016/j.scib.2021.10.006

    Article  CAS  Google Scholar 

  10. Qi J, Li B, Zhou N, Wang X, Deng D, Luo L, Chen L (2019) The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device. Biosens Bioelectron 142:111533. https://doi.org/10.1016/j.bios.2019.111533

    Article  CAS  PubMed  Google Scholar 

  11. Chao J, Zeng L, Li R, Zhou Y (2021) Molecularly imprinted polymer-capped wrinkled silica-quantum dot hybrid particles for fluorescent determination of tetra bromo bisphenol A. Microchim Acta 188:126. https://doi.org/10.1007/s00604-021-04779-0

    Article  CAS  Google Scholar 

  12. Paredes-Ramos M, Sabin-Lopez A, Pena-Garcia J, Perez-Sanchez H, Lopez-Vilarino JM, Sastre de Vicente ME (2020) Computational aided acetaminophen-phthalic acid molecularly imprinted polymer design for analytical determination of known and new developed recreational drugs. J Mol Graph Model 100:107627. https://doi.org/10.1016/j.jmgm.2020.107627

    Article  CAS  PubMed  Google Scholar 

  13. Mujahid A, Dickert FL (2012) Chapter 6 - Molecularly imprinted polymers for sensors: comparison of optical and mass-sensitive detection. In: Li S, Ge Y, Piletsky SA, Lunec J (eds) molecularly imprinted sensors. Elsevier, Amsterdam, pp 125–159

    Chapter  Google Scholar 

  14. Yang W, Ma Y, Sun H, Huang C, Shen X (2022) Molecularly imprinted polymers based optical fiber sensors: A review. TrAC Trends Anal Chem 152:116608. https://doi.org/10.1016/j.trac.2022.116608

    Article  CAS  Google Scholar 

  15. Chantada-Vázquez MP, Sánchez-González J, Peña-Vázquez E, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A (2016) Synthesis and characterization of novel molecularly imprinted polymer-coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine. Biosens Bioelectron 75:213–221. https://doi.org/10.1016/j.bios.2015.08.022

    Article  CAS  PubMed  Google Scholar 

  16. Masteri-Farahani M, Mashhadi-Ramezani S, Mosleh N (2020) Molecularly imprinted polymer containing fluorescent graphene quantum dots as a new fluorescent nanosensor for detection of methamphetamine. Spectrochim Acta Part A: Mol Biomol Spectrosc 229:118021. https://doi.org/10.1016/j.saa.2019.118021

    Article  CAS  Google Scholar 

  17. Merone GM, Tartaglia A, Rossi S, Santavenere F, Bassotti E, D’Ovidio C, Rosato E, de Grazia U, Locatelli M, Boccio PD, Savini F (2022) Fast LC–MS/MS screening method for the evaluation of drugs, illicit drugs, and other compounds in biological matrices. Talanta Open 5:100105. https://doi.org/10.1016/j.talo.2022.100105

    Article  Google Scholar 

  18. Tang MHY, Tong HF, Wong KC, Chong YK (2022) Ropinirole metabolite mimics a new psychoactive substance (4-HO-MET) in LC-MS/MS. Forensic Sci Int 331:111151. https://doi.org/10.1016/j.forsciint.2021.111151

    Article  CAS  PubMed  Google Scholar 

  19. Anzar N, Suleman S, Parvez S, Narang J (2022) A review on illicit drugs and biosensing advances for its rapid detection. Process Biochem 113:113–124. https://doi.org/10.1016/j.procbio.2021.12.021

    Article  CAS  Google Scholar 

  20. Zeng L, Zhang X, Wang X, Cheng D, Li R, Han B, Wu M, Zhuang Z, Ren A, Zhou Y, Jing T (2021) Simultaneous fluorescence determination of bisphenol A and its halogenated analogs based on a molecularly imprinted paper-based analytical device and a segment detection strategy. Biosens Bioelectron 180:113106. https://doi.org/10.1016/j.bios.2021.113106

    Article  CAS  PubMed  Google Scholar 

  21. Duan YP, Dai CM, Zhang YL, Chen L (2013) Selective trace enrichment of acidic pharmaceuticals in real water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted polymers. Anal Chim Acta 758:93–100. https://doi.org/10.1016/j.aca.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  22. Ostovan A, Ghaedi M, Arabi M, Yang Q, Li J, Chen L (2018) Hydrophilic multitemplate molecularly imprinted biopolymers based on a green synthesis strategy for determination of B-family vitamins. ACS Appl Mater Interfaces 10:4140–4150. https://doi.org/10.1021/acsami.7b17500

    Article  CAS  PubMed  Google Scholar 

  23. Zhang M, He J, Shen Y, He W, Li Y, Zhao D, Zhang S (2018) Application of pseudo-template molecularly imprinted polymers by atom transfer radical polymerization to the solid-phase extraction of pyrethroids. Talanta 178:1011–1016. https://doi.org/10.1016/j.talanta.2017.08.100

    Article  CAS  PubMed  Google Scholar 

  24. Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Anal Chem 128:115923. https://doi.org/10.1016/j.trac.2020.115923

    Article  CAS  Google Scholar 

  25. Mujahid A, Afzal A, Glanzing G, Leidl A, Lieberzeit PA, Dickert FL (2010) Imprinted sol–gel materials for monitoring degradation products in automotive oils by shear transverse wave. Anal Chim Acta 675(1):53–57. https://doi.org/10.1016/j.aca.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  26. Zhang XM, Qin YP, Ye HL, Ma XT, He XW, Li WY, Zhang YK (2018) Silicon nanoparticles coated with an epitope-imprinted polymer for fluorometric determination of cytochrome c. Microchim Acta 185:173. https://doi.org/10.1007/s00604-018-2724-7

    Article  CAS  Google Scholar 

  27. Xu C, Uddin KMA, Shen X, Jayawardena HSN, Yan M, Ye L (2013) Photoconjugation of molecularly imprinted polymer with magnetic nanoparticles. ACS Appl Mater Interfaces 5(11):5208–5213. https://doi.org/10.1021/am401042u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haupt K, Dzgoev A, Mosbach K (1998) Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element. Anal Chem 70(3):628–631. https://doi.org/10.1021/ac9711549

    Article  CAS  PubMed  Google Scholar 

  29. Lieberzeit PA, Afzal A, Glanzing G, Dickert FL (2007) Molecularly imprinted sol–gel nanoparticles for mass-sensitive engine oil degradation sensing. Anal Bioanal Chem 389:441–446. https://doi.org/10.1007/s00216-007-1274-3

    Article  CAS  PubMed  Google Scholar 

  30. Yan Y, Jiang L, Zhang S, Shen X, Huang C (2022) Specific “light-up” sensor made easy: an aggregation induced emission monomer for molecular imprinting. Biosens Bioelectron 205:114113. https://doi.org/10.1016/j.bios.2022.114113

    Article  CAS  PubMed  Google Scholar 

  31. Teng Y, Liu F, Kan X (2017) Voltammetric dopamine sensor based on three-dimensional electrosynthesized molecularly imprinted polymers and polypyrrole nanowires. Microchim Acta 184:2515–2522. https://doi.org/10.1007/s00604-017-2243-y

    Article  CAS  Google Scholar 

  32. González-Mariño I, Gracia-Lor E, Rousis NI, Castrignanò E, Thomas KV, Quintana JB, Kasprzyk-Hordern B, Zuccato E, Castiglioni S (2016) Wastewater-based epidemiology to monitor synthetic cathinones use in different European countries. Environ Sci Technol 50(18):10089–10096. https://doi.org/10.1021/acs.est.6b02644

    Article  CAS  PubMed  Google Scholar 

  33. O’Rourke CE, Subedi B (2020) Occurrence and mass loading of synthetic opioids, synthetic cathinones, and synthetic cannabinoids in wastewater treatment plants in four U.S. communities. Environ Sci Technol 54(11):6661–6670. https://doi.org/10.1021/acs.est.0c00250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang C, Shen X, Gjelstad A, Pedersen-Bjergaard S (2018) Investigation of alternative supported liquid membranes in electromembrane extraction of basic drugs from human plasma. J Membrane Sci 548:176–183. https://doi.org/10.1016/j.memsci.2018.09.056

    Article  CAS  Google Scholar 

  35. Capoferri D, Carlo MD, Ntshongontshi N, Iwuoha EI, Sergi M, Ottavio FD, Compagnone D (2017) MIP-MEPS based sensing strategy for the selective assay of dimethoate. Application to wheat flour samples. Talanta 174:599–604. https://doi.org/10.1016/j.talanta.2017.06.062

    Article  CAS  PubMed  Google Scholar 

  36. Pedersen-Bjergaard S, Rasmussen KE (2006) Electrokinetic migration across artificial liquid membranes: new concept for rapid sample preparation of biological fluids. J Chromatogr A 1109(2):183–190. https://doi.org/10.1016/j.chroma.2006.01.025

    Article  CAS  PubMed  Google Scholar 

  37. Drouin N, Kubáň P, Rudaz S, Pedersen-Bjergaard S, Schappler J (2019) Electromembrane extraction: overview of the last decade. TrAC Trends Anal Chem 113:357–363. https://doi.org/10.1016/j.trac.2018.10.024

    Article  CAS  Google Scholar 

  38. Seip KF, Gjelstad A, Pedersen-Bjergaard S (2013) Electromembrane extraction from aqueous samples containing polar organic solvents. J Chromatogr A 1308:37–44. https://doi.org/10.1016/j.chroma.2013.07.105

    Article  CAS  PubMed  Google Scholar 

  39. Hong C, Dong Y, Zhu R, Yan Y, Shen X, Pedersen-Bjergaard S, Huang C (2022) Effect of sample matrices on supported liquid membrane: efficient electromembrane extraction of cathinones from biological samples. Talanta 240:123175. https://doi.org/10.1016/j.talanta.2021.123175

    Article  CAS  PubMed  Google Scholar 

  40. Aldubayyan AA, Castrignanò E, Elliott S, Abbate V (2021) Stability of synthetic cathinones in clinical and forensic toxicological analysis—where are we now? Drug Test Anal 13:44–68. https://doi.org/10.1002/dta.2990

    Article  CAS  PubMed  Google Scholar 

  41. Bijlsma L, Celma A, Castiglioni S, Salgueiro-González N, Bou-Iserte L, Baz-Lomba JA, Reid MJ, Dias MJ, Lopes A, Matias J, Pastor-Alcañiz L, Radonić J, Turk Sekulic M, Shine T, van Nuijs ALN, Hernandez F, Zuccato E (2020) Monitoring psychoactive substance use at six European festivals through wastewater and pooled urine analysis. Sci Total Environ 725:138376. https://doi.org/10.1016/j.scitotenv.2020.138376

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant numbers 81801875 and 21874050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuixiu Huang or Xiantao Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.15 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Yan, Y., Jiang, L. et al. Determination of total cathinones with a single molecularly imprinted fluorescent sensor assisted by electromembrane microextraction. Microchim Acta 189, 324 (2022). https://doi.org/10.1007/s00604-022-05405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05405-3

Keywords

Navigation