Skip to main content
Log in

Turn-on colorimetric detection of hydroquinone based on Au/CuO nanocomposite nanozyme

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

CuO nanorods bearing Au nanoparticles (Au/CuO nanocomposites) were prepared by a solution-phase synthesis and exhibited efficient hydroquinone (HQ)-oxidase activity with good specificity. The Au/CuO nanocomposites effectively catalyzed the oxidation of colorless HQ to brown benzoquinone with an absorbance maximum at 376 nm but did not catalyze the conversions of catechol or resorcinol. Kinetic studies indicated that the Au/CuO nanocomposites exhibited a strong affinity for HQ, with a Michaelis–Menten constant of Km = 0.33 mM. Owing to the high catalytic activity and specificity, a strong color was observed at low concentrations of HQ. Quantitative measurement of HQ was performed via colorimetric analysis, which yielded a detection limit of 3 μM with a linear range of 5–200 μM. This colorimetric sensor was successfully applied to an HQ assay of real water samples with satisfactory results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Marrubini G, Calleri E, Coccini T, Castoldi AF, Manzo L (2005) Direct analysis of phenol, catechol and hydroquinone in human urine by coupled-column HPLC with fluorimetric detection. Chromatographia 62:25–31. https://doi.org/10.1365/s10337-005-0570-3

    Article  CAS  Google Scholar 

  2. Ren X, Liu J, Ren J, Tang F, Meng X (2015) One-pot synthesis of active copper-containing carbon dots with laccase-like activities. Nanoscale 7:19641–19646. https://doi.org/10.1039/C5NR04685H

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Wang YM, Zhu WY, Zhang CH, Tang H, Jiang JH (2018) Conjugated polymer nanoparticles-based fluorescent biosensor for ultrasensitive detection of hydroquinone. Anal Chim Acta 1012:60–65. https://doi.org/10.1016/j.aca.2018.01.027

    Article  CAS  PubMed  Google Scholar 

  4. Wang H, Hu Q, Meng Y, Jin Z, Fang Z, Fu Q, Gao W, Xu L, Song Y, Lu F (2018) Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode. J Hazard Mater 353:151–157. https://doi.org/10.1016/j.jhazmat.2018.02.029

    Article  CAS  PubMed  Google Scholar 

  5. Huang H, Chen Y, Chen Z, Chen J, Hu Y, Zhu JJ (2021) Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol. J Hazard Mater 416:125895. https://doi.org/10.1016/j.jhazmat.2021.125895

    Article  CAS  PubMed  Google Scholar 

  6. Mo G, He X, Zhou C, Ya D, Feng J, Yu C, Deng B (2018) Sensitive detection of hydroquinone based on electrochemiluminescence energy transfer between the exited ZnSe quantum dots and benzoquinone. Sensor Actuat B: Chem 266:784–792. https://doi.org/10.1016/j.snb.2018.03.187

    Article  CAS  Google Scholar 

  7. Rahemi V, Trashin S, Hafideddine Z, Doorslaer SV, Meynen V, Gorton L, Wael K (2020) Amperometric flow-injection analysis of phenols induced by reactive oxygen species generated under daylight irradiation of titania impregnated with horseradish peroxidase. Anal Chem 92:3643–3649. https://doi.org/10.1021/acs.analchem.9b04617

    Article  CAS  PubMed  Google Scholar 

  8. Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W (2019) Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev 48:483683–483704. https://doi.org/10.1039/C8CS00718G

    Article  Google Scholar 

  9. Li M, Chen J, Wu W, Fang Y, Dong S (2020) Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J Am Chem Soc 142:15569–15574. https://doi.org/10.1021/jacs.0c07273

    Article  CAS  PubMed  Google Scholar 

  10. Losada-Garcia N, Jimenez-Alesanco A, Velazquez-Campoy A, Abian O, Palomo JM (2021) Enzyme/nanocopper hybrid nanozymes: modulating enzyme-like activity by the protein structure for biosensing and tumor catalytic therapy. ACS Appl Mater Inter 13:5111–5124. https://doi.org/10.1021/acsami.0c20501

    Article  CAS  Google Scholar 

  11. Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33:2100543. https://doi.org/10.1002/adma.202100543

    Article  CAS  Google Scholar 

  12. Zhu M, Dong X, Li M, Jia L, Ma Y, Zhao M, Cui H (2021) Using photo-induced p-n junction interface effect of CoMn2O4/β-MnO2 oxidase mimetics for colorimetric determination of hydroquinone in seawater. Anal Chim Acta 1172:338695. https://doi.org/10.1016/j.aca.2021.338695

    Article  CAS  PubMed  Google Scholar 

  13. Yang H, Zha J, Zhang P, Qin Y, Chen T, Ye F (2017) Fabrication of CeVO4 as nanozyme for facile colorimetric discrimination of hydroquinone from resorcinol and catechol. Sensor Actuat B: Chem 247:469–478. https://doi.org/10.1016/j.snb.2017.03.042

    Article  CAS  Google Scholar 

  14. Song Y, Zhao M, Li H, Wang X, Cheng Y, Ding L, Fan S, Chen S (2018) Facile preparation of urchin-like NiCo2O4 microspheres as oxidase mimetic for colormetric assay of hydroquinone. Sensor Actuat B: Chem 255:1927–1936. https://doi.org/10.1016/j.snb.2017.08.204

    Article  CAS  Google Scholar 

  15. Zhao X, Lyu H, Yao X, Xu C, Liu Q, Liu Z, Zhang X, Zhang X (2020) Hydroquinone colorimetric sensing based on platinum deposited on CdS nanorods as peroxidase mimics. Microchim Acta 187:587. https://doi.org/10.1007/s00604-020-04451-z

    Article  CAS  Google Scholar 

  16. Wang X, Zhao M, Song Y, Liu Q, Zhang Y, Zhuang Y, Chen S (2019) Synthesis of ZnFe2O4/ZnO heterostructures decorated three-dimensional graphene foam as peroxidase mimetics for colorimetric assay of hydroquinone. Sensor Actuat B: Chem 283:130–137. https://doi.org/10.1016/j.snb.2018.11.079

    Article  CAS  Google Scholar 

  17. Liu X, Lian J, Fan Y, Liu Z, Li H, Liu Q, Yue K (2021) Si doping and perylene diimide modification contributed to enhancement of peroxidase-like activity of ceria for constructing colorimetric sensing platform of hydroquinone. Colloids Surf A 626:127022. https://doi.org/10.1016/j.colsurfa.2021.127022

    Article  CAS  Google Scholar 

  18. Feng M, Wen S, Chen X, Deng D, Yang X, Zhang R (2021) Sweetsop-like α-Fe2O3@CoNi catalyst with superior peroxidase-like activity for sensitive and selective detection of hydroquinone. RSC Adv 11:24065–24071. https://doi.org/10.1039/D1RA03456A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Yang J, Cheng J, Xu Y, Chen W, Li Y (2021) Facile preparation of four-in-one nanozyme catalytic platform and the application in selective detection of catechol and hydroquinone. Sensor Actuat B: Chem 337:129763. https://doi.org/10.1016/j.snb.2021.129763

    Article  CAS  Google Scholar 

  20. Karim MN, Singh M, Weerathunge P, Bian P, Zheng R, Dekiwadia C, Ahmed T, Walia S, Gaspera ED, Singh S, Ramanathan R, Bansal V (2018) Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Appl Nano Mater 1:1694–1704. https://doi.org/10.1021/acsanm.8b00153

    Article  CAS  Google Scholar 

  21. Hu AL, Deng HH, Zheng XQ, Wu YY, Lin XL, Liu AL, Xia XH, Peng HP, Chen W, Hong GL (2017) Self-cascade reaction catalyzed by CuO nanoparticle-based dual-functional enzyme mimics. Biosens Bioelectron 97:21–25. https://doi.org/10.1016/j.bios.2017.05.037

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Hou J, Liu S, Carrier AJ, Guo T, Liang Q, Oakley D, Zhang X (2019) CuO nanoparticles as haloperoxidase-mimics: chloride-accelerated heterogeneous Cu-Fenton chemistry for H2O2 and glucose sensing. Sensor Actuat B: Chem 287:180–184. https://doi.org/10.1016/j.snb.2019.02.030

    Article  CAS  Google Scholar 

  23. Alizadeh N, Ghasemi S, Salimi A, Sham TK, Hallaj R (2020) CuO nanorods as a laccase mimicking enzyme for highly sensitive colorimetric and electrochemical dual biosensor: application in living cell epinephrine analysis. Colloids Surf B: Biointerfaces 195:111228. https://doi.org/10.1016/j.colsurfb.2020.111228

    Article  CAS  PubMed  Google Scholar 

  24. Zhuang Y, Zhang X, Chen Q, Li S, Cao H, Huang Y (2019) Co3O4/CuO hollow nanocage hybrids with high oxidase-like activity for biosensing of dopamine. Mat Sci Eng C 94:858–866. https://doi.org/10.1016/j.msec.2018.10.038

    Article  CAS  Google Scholar 

  25. Jiang F, Ding B, Liang S, Zhao Y, Cheng Z, Xing B, Ma P, Lin J (2021) Intelligent MoS2–CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/chemodynamic therapy/immunotherapy. Biomaterials 268:120545. https://doi.org/10.1016/j.biomaterials.2020.120545

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Hai X, Xia C, Chen XW, Wang JH (2017) Growth of CuO nanoneedles on graphene quantum dots as peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose. Sensor Actuat B: Chem 248:374–384. https://doi.org/10.1016/j.snb.2017.04.011

    Article  CAS  Google Scholar 

  27. Sharma V, Mobin SM (2017) Cytocompatible peroxidase mimic CuO: graphene nanosphere composite as colorimetric dual sensor for hydrogen peroxide and cholesterol with its logic gate implementation. Sensor Actuat B: Chem 240:338–348. https://doi.org/10.1016/j.snb.2016.08.169

    Article  CAS  Google Scholar 

  28. Wang X, Han Q, Cai S, Wang T, Qi C, Yang R, Wang C (2017) Excellent peroxidase mimicking property of CuO/Pt nanocomposites and their application as an ascorbic acid sensor. Analyst 142:2500–2506. https://doi.org/10.1039/C7AN00589J

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Dai J, Li W, Wang K, Huang J, Li Q, Zhan G (2019) Green fabrication of integrated Au/CuO/Oyster shell nanocatalysts with oyster shells as alternative supports for CO oxidation. ACS Sustainable Chem Eng 7:17768–17777. https://doi.org/10.1021/acssuschemeng.9b04181

    Article  CAS  Google Scholar 

  30. Jeon KW, Lee DG, Kim YK, Baek K, Kim K, Jin T, Shim JH, Park JY, Lee IS (2017) Mechanistic insight into the conversion chemistry between Au-CuO heterostructured nanocrystals confined inside SiO2 nanospheres. Chem Mater 29:1788–1795. https://doi.org/10.1021/acs.chemmater.6b05380

    Article  CAS  Google Scholar 

  31. Marelli M, Jouve A, Villa A, Psaro R, Balerna A, Prati L, Evangelisti C (2019) Hybrid Au/CuO nanoparticles: effect of structural features for selective benzyl alcohol oxidation. J Phys Chem C 123:2864–2871. https://doi.org/10.1021/acs.jpcc.8b09449

    Article  CAS  Google Scholar 

  32. Azadfar P, Solati E, Dorranian D (2018) Properties of Au/copper oxide nanocomposite prepared by green laser irradiation of the mixture of individual suspensions. Optical Materials 78:388–395. https://doi.org/10.1016/j.optmat.2018.02.050

    Article  CAS  Google Scholar 

  33. Ghosh S, Satapathy SS, Ghosh K, Jauhari S, Panda SK, Si S (2019) Carbon dots assisted synthesis of gold nanoparticles and their catalytic activity in 4-nitrophenol reduction. ChemistrySelect 4:3416–3422. https://doi.org/10.1002/slct.201804040

    Article  CAS  Google Scholar 

  34. Lu Z, Giles LW, Teo BM, Tabor RF (2022) Carbon dots as a ‘green’ reagent to produce shape and size controlled gold nanoparticles for application in pollutant degradation. Colloids Interface Sci Commun 46:100571. https://doi.org/10.1016/j.colcom.2021.100571

    Article  CAS  Google Scholar 

  35. Zhuang Z, Lin H, Zhang X, Qiu F, Yang H (2016) A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Microchim Acta 183:2807–2814. https://doi.org/10.1007/s00604-016-1931-3

    Article  Google Scholar 

  36. Yoshida H, Kuwauchi Y, Jinschek JR, Sun K, Tanaka S, Kohyama M, Shimada S, Haruta M, Takeda S (2012) Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335:317–319. https://doi.org/10.1126/science.1213194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province, China (No. 2019J01073 and No. 2018J01291). We would like to express our sincere thanks to the Instrumental Analysis Center of Huaqiao University for taking the TEM images and LC-MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjing Zhuang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 734 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Z., Zhang, C., Yu, Z. et al. Turn-on colorimetric detection of hydroquinone based on Au/CuO nanocomposite nanozyme. Microchim Acta 189, 293 (2022). https://doi.org/10.1007/s00604-022-05384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05384-5

Keywords

Navigation