Skip to main content

Advertisement

Log in

CuCo2S4 nanozyme-based stimulus-responsive hydrogel kit for rapid point-of-care testing of uric acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An efficient analysis platform composed of nanozyme-based hydrogel kit and smartphone was constructed for on-site detection of uric acid (UA) in a rapid and realiable manner. CuCo2S4 nanoparticles (CuCo2S4 NPs) as a peroxidase mimic were successfully prepared and the peroxidase-like activity and catalytic mechanism were studied in detail. The hydrogen peroxide (H2O2) stimulus-responsive nanozyme-based hydrogel kit was manufactured by integrating agarose, CuCo2S4 NPs, and 3,3′,5,5′-tetramethylbenzidine (TMB) into the cap of centrifuge tube. H2O2 generated via UA oxidation acts as stimulus signal, which triggers the oxidation of TMB to form blue product (oxTMB) under the catalysis of CuCo2S4 NPs, resulting in the color response of the constructed kit. The color image of the kit was captured by a smartphone built-in camera and converted into color intensity using ImageJ software, thus achieving the quantitative determination of UA. The portable kit possesses high selectivity and was used to monitor UA in human serum with satisfactory results (recovery was in the range 95.8–107.3% and RSD was not greater than 4.6%). The established sensing platform is convenient and reliable, which provides a new strategy for point-of-care testing of UA and has a broad prospect in the fields of chemical sensing and biomedical.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu M, He Y, Zhou J, Ge Y, Zhou J, Song G (2020) A “naked-eye” colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal Chim Acta 1103:134–142. https://doi.org/10.1016/j.aca.2019.12.069

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y-Y, Zhang H-F, Wang D-H, Sheng N, Zhang G-G, Yin L, Sha J-Q (2020) Development of a uricase-free colorimetric biosensor for uric acid based on PPy-coated polyoxometalate-encapsulated fourfold helical metal-organic frameworks. ACS Biomater Sci Eng 6(3):1438–1448. https://doi.org/10.1021/acsbiomaterials.9b01922

    Article  CAS  PubMed  Google Scholar 

  3. Li N-S, Chen Y-T, Hsu Y-P, Pang H-H, Huang C-Y, Shiue Y-L, Wei K-C, Yang H-W (2020) Mobile healthcare system based on the combination of a lateral flow pad and smartphone for rapid detection of uric acid in whole blood. Biosens Bioelectron 164. https://doi.org/10.1016/j.bios.2020.112309

  4. Misra N, Kumar V, Borde L, Varshney L (2013) Localized surface plasmon resonance-optical sensors based on radiolytically synthesized silver nanoparticles for estimation of uric acid. Sens Actuators B Chem 178:371–378. https://doi.org/10.1016/j.snb.2012.12.110

    Article  CAS  Google Scholar 

  5. Zuo Y, Yang Y, Zhu Z, He W, Aydin Z (2011) Determination of uric acid and creatinine in human urine using hydrophilic interaction chromatography. Talanta 83(5):1707–1710. https://doi.org/10.1016/j.talanta.2010.11.073

    Article  CAS  PubMed  Google Scholar 

  6. Sha R, Vishnu N, Badhulika S (2019) MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of uric acid in human urine samples. Sens Actuators B Chem 279:53–60. https://doi.org/10.1016/j.snb.2018.09.106

    Article  CAS  Google Scholar 

  7. Saqib M, Qi L, Hui P, Nsabimana A, Halawa MI, Zhang W, Xu G (2018) Development of luminol-N-hydroxyphthalimide chemiluminescence system for highly selective and sensitive detection of superoxide dismutase, uric acid and Co2+. Biosens Bioelectron 99:519–524. https://doi.org/10.1016/j.bios.2017.08.028

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Li H, Guo B, Wei L, Chen B, Zhang Y (2017) Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens Bioelectron 91:734–740. https://doi.org/10.1016/j.bios.2017.01.020

    Article  CAS  PubMed  Google Scholar 

  9. He Y, Qi F, Niu X, Zhang W, Zhang X, Pan J (2018) Uricase-free on-demand colorimetric biosensing of uric acid enabled by integrated CoP nanosheet arrays as a monolithic peroxidase mimic. Anal Chim Acta 1021:113–120. https://doi.org/10.1016/j.aca.2018.02.073

    Article  CAS  PubMed  Google Scholar 

  10. Yang W, Weng C, Li X, He H, Fei J, Xu W, Yan X, Zhu W, Zhang H, Zhou X (2021) A sensitive colorimetric sensor based on one-pot preparation of h-Fe3O4@ppy with high peroxidase-like activity for determination of glutathione and H2O2. Sens Actuators B Chem 338. https://doi.org/10.1016/j.snb.2021.129844

  11. Liu X, Yan L, Ren H, Cai Y, Liu C, Zeng L, Guo J, Liu A (2020) Facile synthesis of magnetic hierarchical flower-like Co3O4 spheres: mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications. Biosens Bioelectron 165. https://doi.org/10.1016/j.bios.2020.112342

  12. Nirala NR, Vinita, Prakash R (2018) Quick colorimetric determination of choline in milk and serum based on the use of MoS2 nanosheets as a highly active enzyme mimetic. Microchim Acta 185(4). https://doi.org/10.1007/s00604-018-2753-2

  13. Chen Y, Jiao L, Yan H, Xu W, Wu Y, Wang H, Gu W, Zhu C (2020) Hierarchically porous S/N codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal Chem 92(19):13518–13524. https://doi.org/10.1021/acs.analchem.0c02982

    Article  CAS  PubMed  Google Scholar 

  14. Deng H-H, Lin X-L, He S-B, Wu G-W, Wu W-H, Yang Y, Lin Z, Peng H-P, Xia X-H, Chen W (2019) Colorimetric tyrosinase assay based on catechol inhibition of the oxidase-mimicking activity of chitosan-stabilized platinum nanoparticles. Microchim Acta 186(5). https://doi.org/10.1007/s00604-019-3451-4

  15. Bagheri N, Habibi B, Khataee A, Hassanzadeh J (2019) Application of surface molecular imprinted magnetic graphene oxide and high performance mimetic behavior of bi-metal ZnCo MOF for determination of atropine in human serum. Talanta 201:286–294. https://doi.org/10.1016/j.talanta.2019.04.023

    Article  CAS  PubMed  Google Scholar 

  16. Ye M-L, Zhu Y, Lu Y, Gan L, Zhang Y, Zhao Y-G (2021) Magnetic nanomaterials with unique nanozymes-like characteristics for colorimetric sensors: a review. Talanta 230. https://doi.org/10.1016/j.talanta.2021.122299

  17. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  18. Unnikrishnan B, Lien C-W, Chu H-W, Huang C-C (2021) A review on metal nanozyme-based sensing of heavy metal ions: challenges and future perspectives. J Hazard Mater 401. https://doi.org/10.1016/j.jhazmat.2020.123397

  19. Jin C, Lian J, Gao Y, Guo K, Wu K, Gao L, Zhang X, Zhang X, Liu Q (2019) Si doped CoO nanorods as peroxidase mimics for colorimetric sensing of reduced glutathione. ACS Sustainable Chem Eng 7(16):13989–13998. https://doi.org/10.1021/acssuschemeng.9b02459

    Article  CAS  Google Scholar 

  20. Chen C, Zhao D, Jiang Y, Ni P, Zhang C, Wang B, Yang F, Lu Y, Sun J (2019) Logically regulating peroxidase-like activity of gold nanoclusters for sensing phosphate-containing metabolites and alkaline phosphatase activity. Anal Chem 91(23):15017–15024. https://doi.org/10.1021/acs.analchem.9b03629

    Article  CAS  PubMed  Google Scholar 

  21. Qiao F, Chen L, Li X, Li L, Ai S (2014) Peroxidase-like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. Sens Actuators B Chem 193:255–262. https://doi.org/10.1016/j.snb.2013.11.108

    Article  CAS  Google Scholar 

  22. Yang W, Li J, Yang J, Liu Y, Xu Z, Sun X, Wang F, Ng DHL (2020) Biomass-derived hierarchically porous CoFe-LDH/CeO2 hybrid with peroxidase-like activity for colorimetric sensing of H2O2 and glucose. J Alloy Compd 815. https://doi.org/10.1016/j.jallcom.2019.152276

  23. Mvango S, Mashazi P (2019) Synthesis, characterization of copper oxide-gold nanoalloys and their peroxidase-like activity towards colorimetric detection of hydrogen peroxide and glucose. Mater Sci Eng C 96:814–823. https://doi.org/10.1016/j.msec.2018.12.010

    Article  CAS  Google Scholar 

  24. Lim T, Su B, Ji M, Kim D (2017) Ordered mesoporous MCo2O4 (M=Cu, Zn and Ni) spinel catalysts with high catalytic performance for methane combustion. J Mol Catal A Chem 426:68–74. https://doi.org/10.1016/j.molcata.2016.11.002

    Article  CAS  Google Scholar 

  25. Yang G, Lu Y, Li Y, Ying M, Pan H, Qi J, Du M (2021) Spinel Zn3V3O8 nanosheets via a one-step hydrothermal synthesis with peroxidase-like activity for high sensitivity glucose colorimetric detection in synthetic perspiration. J Mater Chem B 9(23):4663–4669. https://doi.org/10.1039/d1tb00608h

    Article  CAS  PubMed  Google Scholar 

  26. Sadighi Z, Liu J, Ciucci F, Kim J-K (2018) Mesoporous MnCo2S4 nanosheet arrays as an efficient catalyst for Li-O2 batteries. Nanoscale 10(33):15588–15599. https://doi.org/10.1039/c8nr03942a

    Article  CAS  PubMed  Google Scholar 

  27. Jin R, Zhao L, Yan X, Han X, Liu M, Chen Y, Li Q, Su D, Liu F, Sun P, Liu X, Wang C, Lu G (2020) Lab in hydrogel portable kit: on-site monitoring of oxalate. Biosens Bioelectron 167. https://doi.org/10.1016/j.bios.2020.112457

  28. Li F, Wang X, Liu J, Hu Y, He J (2019) Double-layered microfluidic paper-based device with multiple colorimetric indicators for multiplexed detection of biomolecules. Sens Actuators B Chem 288:266–273. https://doi.org/10.1016/j.snb.2019.02.116

    Article  CAS  Google Scholar 

  29. Li H, Li Z, Wu Z, Sun M, Han S, Cai C, Shen W, Liu X, Fu Y (2019) Enhanced electrochemical performance of CuCo2S4/carbon nanotubes composite as electrode material for supercapacitors. J Colloid Interface Sci 549:105–113. https://doi.org/10.1016/j.jcis.2019.04.056

    Article  CAS  PubMed  Google Scholar 

  30. Chen L, Lin R, Yan C (2019) Nitrogen-doped double-layer graphite supported CuCo2S4 electrode for high-performance asymmetric supercapacitors. Mater Lett 235:6–10. https://doi.org/10.1016/j.matlet.2018.09.153

    Article  CAS  Google Scholar 

  31. Su L, Dong W, Wu C, Gong Y, Zhang Y, Li L, Mao G, Feng S (2017) The peroxidase and oxidase-like activity of NiCo2O4 mesoporous spheres: mechanistic understanding and colorimetric biosensing. Anal Chim Acta 951:124–132. https://doi.org/10.1016/j.aca.2016.11.035

    Article  CAS  PubMed  Google Scholar 

  32. Hou P, Ju P, Hao L, Chen C, Jiang F, Ding H, Sun C (2021) Colorimetric determination of hydrogen peroxide based on the robust peroxidase-like activities of flower-like YVO4 microstructures. Colloid Surf A-Physicochem Eng Asp 618. https://doi.org/10.1016/j.colsurfa.2021.126427

  33. Liu W, Chu L, Zhang C, Ni P, Jiang Y, Wang B, Lu Y, Chen C (2021) Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes. Chem Eng J 415. https://doi.org/10.1016/j.cej.2021.128876

  34. Wang T, Bai Q, Zhu Z, Xiao H, Jiang F, Du F, Yu WW, Liu M, Sui N (2021) Graphdiyne-supported palladium-iron nanosheets: a dual-functional peroxidase mimetic nanozyme for glutathione detection and antibacterial application. Chem Eng J 413. https://doi.org/10.1016/j.cej.2020.127537

  35. Mu Q, Sun Y, Guo A, Xu X, Qin B, Cai A (2021) A bifunctionalized NiCo2O4-Au composite: intrinsic peroxidase and oxidase catalytic activities for killing bacteria and disinfecting wound. J Hazard Mater 402. https://doi.org/10.1016/j.hazmat.2020.123939

Download references

Funding

This work was supported by the Middle-aged Backbone Personnel Training Program of Shenyang Pharmaceutical University (ZQN2016011), Scientific Research Fund of Liaoning Provincial Education Department (2020LZD02), Inter-school Cooperation Project of General Undergraduate Universities in Liaoning Province (2020–181), Project of Shenyang Key Laboratory of Functional Drug Carrier Materials (grant no. 19–110-4–08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longshan Zhao or Zhili Xiong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1931 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Zhao, H., Yuan, Y. et al. CuCo2S4 nanozyme-based stimulus-responsive hydrogel kit for rapid point-of-care testing of uric acid. Microchim Acta 189, 283 (2022). https://doi.org/10.1007/s00604-022-05381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05381-8

Keywords

Navigation