Skip to main content

Advertisement

Log in

Accurate identification of kidney injury progression via a fluorescent biosensor array

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Identifying the progress of kidney injury may aid the effective treatment and intervention. Herein, we developed a fluorescent biosensor array for instantaneous and accurate identification of the kidney injury progression via “doubled” signals. The multichannel biosensor array consisted of polydopamine-polyethyleneimine (PDA-PEI) and multicolor-labelled different length of DNAs including AAAAA-Cyanine7 (5A-Cy7), AAAAAAAAAA-Texas Red (10A-Texas Red), and AAAAAAAAAAAAAAAAAAAA-VIC (20A-VIC). Facing to the variety of protein in urine with alterable charge accompanied with different progress of kidney injury, the composition of urine replaces the DNA signal molecules, forming their special fluorescence patterns. Taking the size of protein into consideration, the original three variables induced by the protein charge were extended to six variables induced by the two factors of protein particle size and charge difference, which could provide a more accurate strategy to identify the progress of kidney injury. Notably, this strategy not only opened up new perspective for identification the progress of kidney injury via the size and charge of urine protein, but also improved the resolving power of sensor array by increasing the number of sensor elements for extending their potential application to various diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bellomo R, Kellum JA, Ronco C (2012) Acute kidney injury. Lancet 380(9843):756–766. https://doi.org/10.1016/S0140-6736(11)61454-2

    Article  PubMed  Google Scholar 

  2. Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371(1):58–66. https://doi.org/10.1056/NEJMra1214243

    Article  CAS  PubMed  Google Scholar 

  3. Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81(5):442–448. https://doi.org/10.1038/ki.2011.379

    Article  PubMed  Google Scholar 

  4. Du B, Yu M, Zheng J (2018) Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater 3:358–374. https://doi.org/10.1038/s41578-018-0038-3

    Article  Google Scholar 

  5. Du B, Jiang X, Das A, Zhou Q, Yu M, Jin R, Zheng J (2017) Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat Nanotechnol 12(11):1096–1102. https://doi.org/10.1038/nnano.2017.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Glassock RJ, Warnock DG, Delanaye P (2017) The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat Rev Nephrol 13(2):104–114. https://doi.org/10.1038/nrneph.2016.163

    Article  CAS  PubMed  Google Scholar 

  7. Herzog CA, Asinger RW, Berger AK, Charytan DM, Díez J, Hart RG, Eckardt KU, Kasiske BL, McCullough PA, Passman RS, DeLoach SS, Pun PH, Ritz E (2011) Cardiovascular disease in chronic kidney disease. A clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 80(6):572–86 https://doi.org/10.1038/ki.2011.223

  8. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382(9888):260–272. https://doi.org/10.1016/S0140-6736(13)60687-X

    Article  PubMed  Google Scholar 

  9. Kubota R, Hamachi I (2015) Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells. Chem Soc Rev 44(13):4454–4471. https://doi.org/10.1039/c4cs00381k

    Article  CAS  PubMed  Google Scholar 

  10. Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, Liu KD, Mehta RL, Pannu N, Van Biesen W, Vanholder R (2013) Acute kidney injury: an increasing global concern. Lancet 382(9887):170–179. https://doi.org/10.1016/S0140-6736(13)60647-9

    Article  PubMed  Google Scholar 

  11. Le NDB, Yesilbag Tonga G, Mout R, Kim ST, Wille ME, Rana S, Dunphy KA, Jerry DJ, Yazdani M, Ramanathan R, Rotello CM, Rotello VM (2017) Cancer cell discrimination using host-guest “doubled” arrays. J Am Chem Soc 139(23):8008–8012. https://doi.org/10.1021/jacs.7b03657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, Nahas ME, Jaber BL, Jadoul M, Levin A, Powe NR, Rossert J, Wheeler DC, Lameire N, Eknoyan G (2007) Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. Kidney Int 72(3):247–259. https://doi.org/10.1038/sj.ki.5002343

    Article  CAS  PubMed  Google Scholar 

  13. Levey AS, James MT (2017) Acute kidney injury. Ann Intern Med 167(9):ITC66–ITC80. https://doi.org/10.7326/AITC201711070

  14. Peveler WJ, Landis RF, Yazdani M, Day JW, Modi R, Carmalt CJ, Rosenberg WM, Rotello VM (2018) A rapid and robust diagnostic for liver fibrosis using a multichannel polymer sensor array. Adv Mater 30(28):e1800634. https://doi.org/10.1002/adma.201800634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rana S, Le ND, Mout R, Duncan B, Elci SG, Saha K, Rotello VM (2015) A Multichannel biosensor for rapid determination of cell surface glycomic signatures. ACS Cent Sci 1(4):191–197. https://doi.org/10.1021/acscentsci.5b00126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rana S, Le ND, Mout R, Saha K, Tonga GY, Bain RE, Miranda OR, Rotello CM, Rotello VM (2015) A multichannel nanosensor for instantaneous readout of cancer drug mechanisms. Nat Nanotechnol 10(1):65–69. https://doi.org/10.1038/nnano.2014.285

    Article  CAS  PubMed  Google Scholar 

  17. Ricci Z, Cruz D, Ronco C (2008) The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int 73(5):538–546. https://doi.org/10.1038/sj.ki.5002743

    Article  CAS  PubMed  Google Scholar 

  18. Rysz J, Gluba-Brzózka A, Franczyk B, Jabłonowski Z, Ciałkowska-Rysz A (2017) Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome. Int J Mol Sci 18(8):1702. https://doi.org/10.3390/ijms18081702

    Article  CAS  PubMed Central  Google Scholar 

  19. Yu Z, Cai G, Liu X, Tang D (2021) Pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection. Anal Chem 93(5):2916–2925. https://doi.org/10.1021/acs.analchem.0c04501

    Article  CAS  PubMed  Google Scholar 

  20. Zhang K, Lv S, Tang D (2019) Novel 3D printed device for dual-signaling ratiometric photoelectrochemical readout of biomarker using λ-exonuclease-assisted recycling amplification. Anal Chem 91(15):10049–10055. https://doi.org/10.1021/acs.analchem.9b01958

    Article  CAS  PubMed  Google Scholar 

  21. Sparrow HG, Swan JT, Moore LW, Gaber AO, Suki WN (2019) Disparate outcomes observed within Kidney Disease: Improving Global Outcomes (KDIGO) acute kidney injury stage 1. Kidney Int 95(4):905–913. https://doi.org/10.1016/j.kint.2018.11.030

    Article  PubMed  Google Scholar 

  22. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779. https://doi.org/10.1021/cr2001178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu Q, Zhang Y, Tang B, Zhang CY (2016) Multicolor quantum dot-based chemical nose for rapid and array-free differentiation of multiple proteins. Anal Chem 88(4):2051–2058. https://doi.org/10.1021/acs.analchem.5b03109

    Article  CAS  PubMed  Google Scholar 

  24. Zhang WR, Parikh CR (2019) Biomarkers of acute and chronic kidney disease. Annu Rev Physiol 81:309–333. https://doi.org/10.1146/annurev-physiol-020518-114605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qiu Z, Shu J, Liu J, Tang D (2019) Dual-channel photoelectrochemical ratiometric aptasensor with up-converting nanocrystals using spatial-resolved technique on homemade 3D printed device. Anal Chem 91(2):1260–1268. https://doi.org/10.1021/acs.analchem.8b05455

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Liu S, Zhou L et al (2012) Effects of HuangKui capsules on glibenclamide pharmacokinetics in rats. J Ethnopharmacol 139(1):1–5. https://doi.org/10.1016/j.jep.2011.03.043

    Article  PubMed  Google Scholar 

  27. Mao ZM, Shen SM, Wan YG et al (2015) Huangkui capsule attenuates renal fibrosis in diabetic nephropathy rats through regulating oxidative stress and p38MAPK/Akt pathways, compared to α-lipoic acid. J Ethnopharmacol 173:256–265. https://doi.org/10.1016/j.jep.2015.07.036

    Article  PubMed  Google Scholar 

  28. Hu Y, Yu XA, Zhang Y et al (2020) Rapid and sensitive detection of NGAL for the prediction of acute kidney injury via a polydopamine nanosphere/aptamer nanocomplex coupled with DNase I-assisted recycling amplification. Analyst 145(10):3620–3625. https://doi.org/10.1039/d0an00474j

    Article  CAS  PubMed  Google Scholar 

  29. Jiang Y, Shi M, Liu Y et al (2017) Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew Chem Int Ed Engl 56(39):11916–11920. https://doi.org/10.1002/anie.201703807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bian X, Lu Z, van Kollenburg G (2020) Ultraviolet-visible diffuse reflectance spectroscopy combined with chemometrics for rapid discrimination of Angelicae Sinensis Radix from its four similar herbs. Anal Methods 12(27):3499–3507. https://doi.org/10.1039/d0ay00285b

    Article  CAS  PubMed  Google Scholar 

  31. Badaró AT, Garcia-Martin JF, López-Barrera MDC, Barbin DF, Alvarez-Mateos P (2020) Determination of pectin content in orange peels by near infrared hyperspectral imaging [published online ahead of print. Food Chem 323:126861 https://doi.org/10.1016/j.foodchem.2020.126861

  32. Bello A, Bianchi F, Careri M, Giannetto M, Mori G, Musci M (2007) Multivariate calibration on NIR data: development of a model for the rapid evaluation of ethanol content in bakery products. Anal Chim Acta 603(1):8–12. https://doi.org/10.1016/j.aca.2007.09.037

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Yu XA, Hu YT, Bai XF, Zhang R, Lu M, Sun JH, Tian JW, Yu BY (2020) A polydopamine-polyethyleneimine/quantum dot sensor for instantaneous readout of cell surface charge to reflect cell states. Sensors Actuators B Chem 324https://doi.org/10.1016/j.snb.2020.128696

  34. Zhao C, Zuo F, Liao Z, Qin Z, Du S, Zhao Z (2015) Mussel-inspired one-pot synthesis of a fluorescent and water-soluble polydopamine-polyethyleneimine copolymer. Macromol Rapid Commun 36(10):909–915. https://doi.org/10.1002/marc.201500021

    Article  CAS  PubMed  Google Scholar 

  35. Zhong Z, Jia L (2019) Room temperature preparation of water-soluble polydopamine-polyethyleneimine copolymer dots for selective detection of copper ions. Talanta 197:584–591. https://doi.org/10.1016/j.talanta.2019.01.070

    Article  CAS  PubMed  Google Scholar 

  36. Yu XA, Bai X, Zhang R et al (2021) A nanosensor for precise discrimination of nephrotoxic drug mechanisms via dynamic fluorescence fingerprint strategy. Anal Chim Acta 1160:338447. https://doi.org/10.1016/j.aca.2021.338447

    Article  CAS  PubMed  Google Scholar 

  37. Weng J, Wang Y, Zhang Y, Ye D (2021) An activatable near-infrared fluorescence probe for in vivo imaging of acute kidney injury by targeting phosphatidylserine and caspase-3. J Am Chem Soc 143(43):18294–18304. https://doi.org/10.1021/jacs.1c08898

    Article  CAS  PubMed  Google Scholar 

  38. Cheng P, Chen W, Li S, He S, Miao Q, Pu K (2020) Fluoro-photoacoustic polymeric renal reporter for real-time dual imaging of acute kidney injury. Adv Mater 32(17):e1908530. https://doi.org/10.1002/adma.201908530

    Article  CAS  PubMed  Google Scholar 

  39. Huang J, Li J, Lyu Y, Miao Q, Pu K (2019) Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat Mater 18(10):1133–1143. https://doi.org/10.1038/s41563-019-0378-4

    Article  CAS  PubMed  Google Scholar 

  40. Farid DMd, Zhang L, Rahman CM, Hossain MA, Strachan R (2014) Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Syst Appl 41:1937–1946. https://doi.org/10.1016/j.eswa.2013.08.089

    Article  Google Scholar 

  41. Cuadros-Rodríguez L, Pérez-Castaño E, Ruiz-Samblás C (2016) Quality performance metrics in multivariate classification methods for qualitative analysis. TrAC, Trends Anal Chem 80:612–624. https://doi.org/10.1016/j.trac.2016.04.021

    Article  CAS  Google Scholar 

  42. Yao C, Chen Y, Zhao M, et al (2021) A bright, renal-clearable NIR-II brush macromolecular probe with long blood circulation time for kidney disease bioimaging [published online ahead of print. Angew Chem Int Ed Engl https://doi.org/10.1002/anie.202114273

Download references

Funding

This research was supported by National Natural Science Foundation of China (21775166 and 82104357), Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province (BK20180026), and “Double First-Class” University Project (CPU2018GF06).

Author information

Authors and Affiliations

Authors

Contributions

Xie-an Yu: writing-original draft, methodology, investigation, formal analysis. Lei Zhang: writing—original draft, methodology, investigation. Ran Zhang: formal analysis, data curation. Xuefei Bai: formal analysis, data curation. Yiting Hu: formal analysis, data curation. Ying Zhang: formal analysis, data curation. Yang Wu: data curation. Ziyi Li: data curation. Bing Wang: validation, supervision. Jiangwei Tian: writing—review and editing, validation, supervision, project administration, funding acquisition.

Corresponding authors

Correspondence to Bing Wang or Jiangwei Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3573 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Xa., Zhang, L., Zhang, R. et al. Accurate identification of kidney injury progression via a fluorescent biosensor array. Microchim Acta 189, 304 (2022). https://doi.org/10.1007/s00604-022-05380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05380-9

Keywords

Navigation