Skip to main content
Log in

Green photoreduction synthesis of dispersible gold nanoparticles and their direct in situ assembling in multidimensional substrates for SERS detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) and their composites have been applied in surface-enhanced Raman scattering (SERS) detection methods, owing to their stable and excellent surface plasmon resonance. Unfortunately, methods for synthesizing AuNPs often require harsh conditions and complicated external steps. Additionally, removing residual surfactants or unreacted reductants is critical for improving the sensitivity of SERS detection, especially when employing AuNPs-assembled multidimensional substrates. In this study, we propose a simple and green method for AuNPs synthesis via photoreduction, which does not require external surfactant additives or stabilizers. All the processes were completed within 20 min. Along this way, only methanol was employed as the electron acceptor. Based on this photoreduction synthesis strategy, AuNPs can be directly and circularly assembled in situ in multidimensional substrates for SERS detection. The removal of residual methanol was easy because of its low boiling point. This strategy was employed for the preparation of three different dimensional SERS substrates: filter paper@AuNPs, g-C3N4@AuNPs, and MIL-101(Cr)@AuNPs. The limit of detection of filter paper@AuNPs for thiabendazole SERS detection was 1.0 × 10−7 mol/L, while the limits of detection of g-C3N4@AuNPs and MIL-101(Cr)@AuNPs for malachite green SERS detection were both 5.0 × 10−11 mol/L. This strategy presents potential in AuNP doping materials and SERS detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kneipp J, Kneipp H, Kneipp K (2008) SERS-a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37:1052

    Article  CAS  Google Scholar 

  2. Vega MM Bonifacio A, Lughi V et al (2014) Long-term stability of surfactant-free gold nanostars. J Nanopart Res 16

  3. Jadhav K, Hr R, Deshpande S et al (2018) Phytosynthesis of gold nanoparticles: characterization, biocompatibility, and evaluation of its osteoinductive potential for application in implant dentistry. Mater Sci Eng, C 93:664–670

    Article  CAS  Google Scholar 

  4. Yang B, Chou J, Dong X et al (2017) Size-controlled green synthesis of highly stable and uniform small to ultrasmall gold nanoparticles by controlling reaction steps and pH. The Journal of Physical Chemistry C 121:8961–8967

    Article  CAS  Google Scholar 

  5. Prakash A, Pathrose BP, Mathew S et al (2018) Variations in thermo-optical properties of neutral red dye with laser ablated gold nanoparticles. Opt Mater 79:237–242

    Article  CAS  Google Scholar 

  6. Chen C Li Y, Kerman S et al (2018) High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat Commun 9

  7. Su Y, Shi Y, Wang P et al (2019) Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering. Beilstein J Nanotech 10:549–556

    Article  CAS  Google Scholar 

  8. Daruich De Souza C, Ribeiro Nogueira B, Rostelato MECM (2019) Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J Alloy Compd 798:714–740

    Article  CAS  Google Scholar 

  9. Jadoun S, Arif R, Jangid NK et al (2021) Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett 19:355–374

    Article  CAS  Google Scholar 

  10. Kalimuthu K, Cha BS, Kim S et al (2020) Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review. Microchem J 152:104296

    Article  CAS  Google Scholar 

  11. Nasaruddin RR, Chen T, Yao Q et al (2021) Toward greener synthesis of gold nanomaterials: From biological to biomimetic synthesis. Coordin Chem Rev 426:213540

    Article  CAS  Google Scholar 

  12. El-Borady OM, Ayat MS, Shabrawy MA et al (2020) Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. Adv Powder Technol 31:4390–4400

    Article  CAS  Google Scholar 

  13. Naharuddin NZA, Sadrolhosseini AR, Abu Bakar MH et al (2020) Laser ablation synthesis of gold nanoparticles in tetrahydrofuran. Opt Mater Express 10:323

    Article  CAS  Google Scholar 

  14. López-Lorente AI, Simonet BM, Valcárcel M et al (2014) Characterization of stainless steel assisted bare gold nanoparticles and their analytical potential. Talanta 118:321–327

    Article  Google Scholar 

  15. Kumari G, Kandula J, Narayana C (2015) How far can we probe by SERS? The Journal of Physical Chemistry C 119:20057–20064

    Article  CAS  Google Scholar 

  16. Vesga MJ, Mckechnie D, Laing S et al (2021) Effect of glycine on aggregation of citrate-functionalised gold nanoparticles and SERS measurements Colloids and surfaces A Physicochemical and engineering aspects 621:126523

    CAS  Google Scholar 

  17. Kumari Y, Kaur G, Kumar R et al (2019) Gold nanoparticles: new routes across old boundaries. Adv Colloid Interfac 274:102037

    Article  CAS  Google Scholar 

  18. Wu J, Zhang L, Huang F et al (2020) Surface enhanced Raman scattering substrate for the detection of explosives: construction strategy and dimensional effect. J Hazard Mater 387:121714

    Article  CAS  Google Scholar 

  19. Lai H, Xu F, Zhang Y et al (2018) Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications. J Mater Chem B 6:4008–4028

    Article  CAS  Google Scholar 

  20. Lai H, Li G, Xu F et al (2020) Metal-organic frameworks: opportunities and challenges for surface-enhanced Raman scattering - a review. J Mater Chem C 8:2952–2963

    Article  CAS  Google Scholar 

  21. Harada M, Kizaki S (2016) Formation mechanism of gold nanoparticles synthesized by photoreduction in aqueous ethanol solutions of polymers using in situ quick scanning X-ray absorption fine structure and small-angle X-ray scattering. Cryst Growth Des 16:1200–1212

    Article  CAS  Google Scholar 

  22. Chen Y, Chang W, Lin C (2021) Selective growth of patterned monolayer gold nanoparticles on SU-8 through photoreduction for plasmonic applications. ACS Appl Nano Mater 4:229–235

    Article  CAS  Google Scholar 

  23. Yang S, Zhou L, Su Y et al (2019) One-pot photoreduction to prepare NIR-absorbing plasmonic gold nanoparticles tethered by amphiphilic polypeptide copolymer for synergistic photothermal-chemotherapy. Chinese Chem Lett 30:187–191

    Article  CAS  Google Scholar 

  24. Mihaly M, Fleancu MC, Olteanu NL et al (2012) Synthesis of gold nanoparticles by microemulsion assisted photoreduction method. Cr Chim 15:1012–1021

    Article  CAS  Google Scholar 

  25. Kwolek P, Wojnicki M (2014) The kinetic study of photoreduction of tetrachloroaurate acid by methanol in acidic media. J Photochem Photobiol, A 286:47–54

    Article  CAS  Google Scholar 

  26. Tian J, Liu Q, Ge C et al (2013) Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 5:8921

    Article  CAS  Google Scholar 

  27. Su L, Xiong Y, Yang H et al (2016) Prussian blue nanoparticles encapsulated inside a metal–organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening. J Mater Chem B 4:128–134

    Article  CAS  Google Scholar 

  28. Mirkhalaf F, Paprotny J, Schiffrin DJ (2006) Synthesis of metal nanoparticles stabilized by metal−carbon bonds. J Am Chem Soc 128:7400–7401

    Article  CAS  Google Scholar 

  29. Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088

    Article  CAS  Google Scholar 

  30. Unal IS, Demirbas A, Onal I et al (2020) One step preparation of stable gold nanoparticle using red cabbage extracts under UV light and its catalytic activity. J Photochem Photobiol, B 204:111800

    Article  CAS  Google Scholar 

  31. Shiraishi Y, Tanaka H, Sakamoto H et al (2017) Synthesis of Au nanoparticles with benzoic acid as reductant and surface stabilizer promoted solely by UV light. Langmuir 33:13797–13804

    Article  CAS  Google Scholar 

  32. Ashley B, Vakil PN, Lynch BB et al (2017) Microwave enhancement of autocatalytic growth of nanometals. ACS Nano 11:9957–9967

    Article  CAS  Google Scholar 

  33. Harada M, Einaga H (2007) In situ XAFS studies of Au particle formation by photoreduction in polymer solutions. Langmuir 23:6536–6543

    Article  CAS  Google Scholar 

  34. Baffou G, Quidant R, García De Abajo FJ (2010) Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4:709–716

    Article  CAS  Google Scholar 

  35. Mitomo H, Horie K, Matsuo Y et al (2016) Active gap SERS for the sensitive detection of biomacromolecules with plasmonic nanostructures on hydrogels. Adv Opt Mater 4:259–263

    Article  CAS  Google Scholar 

  36. Hu B, Pu H, Sun D (2021) Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection. Trends Food Sci Tech 110:304–320

    Article  CAS  Google Scholar 

  37. Kim EJ, Kim H, Park E et al (2021) Paper-based multiplex surface-enhanced raman scattering detection using polymerase chain reaction probe codification. Anal Chem 93:3677–3685

    Article  CAS  Google Scholar 

  38. Jiang J Zou S, Li Y et al (2019) Flexible and adhesive tape decorated with silver nanorods for in-situ analysis of pesticides residues and colorants. Microchim Acta 186

  39. Qu L, Wang N, Xu H et al (2017) Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering. Adv Funct Mater 27:1701714

    Article  Google Scholar 

  40. Huang X Zeng Z, Bao S et al (2013) Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat Commun 4

  41. Panimalar S, Uthrakumar R, Selvi ET et al (2020) Studies of MnO2/g-C3N4 hetrostructure efficient of visible light photocatalyst for pollutants degradation by sol-gel technique. Surfaces and Interfaces 20:100512

    Article  CAS  Google Scholar 

  42. Yang S, Dai X, Stogin BB et al (2016) Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc Natl Acad Sci 113:268–273

    Article  CAS  Google Scholar 

  43. Jiang X, Ruan G, Deng H et al (2021) Synthesis of amphiphilic and porous copolymers through polymerization of high internal phase carboxylic carbon nanotubes emulsions and application as adsorbents for triazine herbicides analysis. Chem Eng J 415:129005

    Article  CAS  Google Scholar 

  44. Al Lafi AG Assfour B, Assaad T(2020) Metal organic framework MIL-101(Cr) spectroscopic investigations to reveal iodine capture mechanism. J Inorg Organomet 30 1218–1230

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21964008, 22104025), Guangxi Natural Science Foundation of China (Nos. 2020GXNSFBA159050, 2019GXNSFBA245100, 2020GXNSFBA297147), Guangxi science and technology base and talent special project (No. GuikeAD20238050), and the Students’ Platform for Innovation and Entrepreneurship Training Program (No. 202010601022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengyi Chen, Linjing Su or Yuhao Xiong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2968 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Lu, S., Zhang, Z. et al. Green photoreduction synthesis of dispersible gold nanoparticles and their direct in situ assembling in multidimensional substrates for SERS detection. Microchim Acta 189, 275 (2022). https://doi.org/10.1007/s00604-022-05379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05379-2

Keywords

Navigation