Skip to main content
Log in

Biomineralization-inspired magnetic nanoflowers for sensitive miRNA detection based on exonuclease-assisted target recycling amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Biomineralization-inspired magnetic hybrid nanoflowers were prepared facilely, and capture probes were easily immobilized on the obtained nanoflowers without tedious processing. Based on the magnetic hybrid nanoflowers and exonuclease-assisted target recycling amplification, a fluorescence miRNA sensor was fabricated. The presence of target miRNA leads to the formation of the double-strand structure, which would then be selectively digested by the exonuclease and increase fluorescence intensity. The target miRNA can be released for recycling and signal amplification. Under optimized reaction conditions, the hybrid nanoflower–based miRNA sensor had a broad detection range from 0.001 nM to 100 nM and a limit of detection of 0.23 pM (S/N = 3). The sensitive detection of miRNA in serum was also achieved with recoveries from 94.3% to 116.1%. This work provides a new insight into the fabrication of bioconjugated materials and shows great potential in miRNA sensing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zheng H, Wu X, Yin J, Wang S, Li Z, You C (2019) Clinical applications of liquid biopsies for early lung cancer detection. Am J Cancer Res 9:2567–2579

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Deng R, Zhang K, Li J (2017) Isothermal amplification for microRNA detection: from the test tube to the cell. Acc Chem Res 50:1059–1068. https://doi.org/10.1021/acs.accounts.7b00040

    Article  CAS  PubMed  Google Scholar 

  3. Peng H, Newbigging AM, Reid MS, Uppal JS, Xu J, Zhang H, Le XC (2020) Signal amplification in living cells: a review of microRNA detection and imaging. Anal Chem 92:292–308. https://doi.org/10.1021/acs.analchem.9b04752

    Article  CAS  PubMed  Google Scholar 

  4. Wu T, Xu T, Chen Y, Yang Y, Xu L-P, Zhang X, Wang S (2018) Renewable superwettable biochip for miRNA detection. Sens Actuators B Chem 258:715–721. https://doi.org/10.1016/j.snb.2017.11.109

    Article  CAS  Google Scholar 

  5. Wu T, Cao Y, Yang Y, Zhang X, Wang S, Xu LP, Zhang X (2019) A three-dimensional DNA walking machine for the ultrasensitive dual-modal detection of miRNA using a fluorometer and personal glucose meter. Nanoscale 11:11279–11284. https://doi.org/10.1039/c9nr03588e

    Article  CAS  PubMed  Google Scholar 

  6. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed Engl 49:2114–2138. https://doi.org/10.1002/anie.200903463

    Article  CAS  PubMed  Google Scholar 

  7. Tran HV, Piro B (2021) Recent trends in application of nanomaterials for the development of electrochemical microRNA biosensors. Mikrochim Acta 188:128. https://doi.org/10.1007/s00604-021-04784-3

    Article  CAS  PubMed  Google Scholar 

  8. Yin J, Huang Y, Hameed S, Zhou R, Xie L, Ying Y (2020) Large scale assembly of nanomaterials: mechanisms and applications. Nanoscale 12:17571–17589. https://doi.org/10.1039/d0nr04156d

    Article  CAS  Google Scholar 

  9. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764. https://doi.org/10.1039/C3CS60273G

    Article  CAS  PubMed  Google Scholar 

  10. Stephanopoulos N, Francis MB (2011) Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7:876–884. https://doi.org/10.1038/nchembio.720

    Article  CAS  PubMed  Google Scholar 

  11. Lin S, Yang X, Jia S, Weeks AM, Hornsby M, Lee PS, Nichiporuk RV, Iavarone AT, Wells JA, Toste FD, Chang CJ (2017) Redox-based reagents for chemoselective methionine bioconjugation. Science 355:597. https://doi.org/10.1126/science.aal3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou Y, Liu B, Yang R, Liu J (2017) Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Bioconjugate Chem 28:2903–2909. https://doi.org/10.1021/acs.bioconjchem.7b00673

    Article  CAS  Google Scholar 

  13. Krajina BA, Proctor AC, Schoen AP, Spakowitz AJ, Heilshorn SC (2018) Biotemplated synthesis of inorganic materials: an emerging paradigm for nanomaterial synthesis inspired by nature. Prog Mater Sci 91:1–23. https://doi.org/10.1016/j.pmatsci.2017.08.001

    Article  CAS  Google Scholar 

  14. Yao S, Jin B, Liu Z, Changyu S, Zhao R, Wang X, Tang R (2017) Biomineralization: from material tactics to biological strategy. Adv Mater 29:1605903. https://doi.org/10.1002/adma.201605903

    Article  CAS  Google Scholar 

  15. Liu Y, Chen J, Du M, Wang X, Ji X, He Z (2017) The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosens Bioelectron 92:68–73. https://doi.org/10.1016/j.bios.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  16. Ye R, Zhu C, Song Y, Lu Q, Ge X, Yang X, Zhu M-J, Du D, Li H, Lin Y (2016) Bioinspired synthesis of all-in-one organic-inorganic hybrid nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small 12:3094–3100. https://doi.org/10.1002/smll.201600273

    Article  CAS  PubMed  Google Scholar 

  17. Schaumburg F, Carrell CS, Henry CS (2019) Rapid bacteria detection at low concentrations using sequential immunomagnetic separation and paper-based isotachophoresis. Anal Chem 91:9623–9630. https://doi.org/10.1021/acs.analchem.9b01002

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Lin J (2020) Recent advances on magnetic nanobead based biosensors: from separation to detection. Trends Anal Chem 128:115915. https://doi.org/10.1016/j.trac.2020.115915

    Article  CAS  Google Scholar 

  19. Yang Y, Wu T, Xu LP, Zhang X (2021) Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy. Talanta 226:122132. https://doi.org/10.1016/j.talanta.2021.122132

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Wu T, Yang Y, Wen Y, Wang S, Xu L-P (2020) Superwettable electrochemical biosensor based on a dual-DNA walker strategy for sensitive E. coli O157: H7 DNA detection. Sens Actuators B Chem 321:128472. https://doi.org/10.1016/j.snb.2020.128472

    Article  CAS  Google Scholar 

  21. Wang H, Tang H, Yang C, Li Y (2019) Selective single molecule nanopore sensing of microRNA using PNA functionalized magnetic core-shell Fe3O4-Au nanoparticles. Anal Chem 91:7965–7970. https://doi.org/10.1021/acs.analchem.9b02025

    Article  CAS  PubMed  Google Scholar 

  22. Liu B, Liu J (2014) DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chem Commun (Camb) 50:8568–8570. https://doi.org/10.1039/C4CC03264K

    Article  CAS  Google Scholar 

  23. Miao X, Cheng Z, Ma H, Li Z, Xue N, Wang P (2018) Label-free platform for microRNA detection based on the fluorescence quenching of positively charged gold nanoparticles to silver nanoclusters. Anal Chem 90:1098–1103. https://doi.org/10.1021/acs.analchem.7b01991

    Article  CAS  PubMed  Google Scholar 

  24. Yin B-C, Liu Y-Q, Ye B-C (2012) One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J Am Chem Soc 134:5064–5067. https://doi.org/10.1021/ja300721s

    Article  CAS  PubMed  Google Scholar 

  25. Prabha G, Raj V (2018) Synthesis and characterization of chitosan–polyvinylpyrrolidone–bovine serum albumin-coated magnetic iron oxide nanoparticles as potential carrier for delivery of tamoxifen. J Iran Chem Soc 15:871–884. https://doi.org/10.1007/s13738-017-1286-7

    Article  CAS  Google Scholar 

  26. Wu T, Yang Y, Cao Y, Song Y, Xu LP, Zhang X, Wang S (2018) Bioinspired DNA-inorganic hybrid nanoflowers combined with a personal glucose meter for onsite detection of miRNA. ACS Appl Mater Interfaces 10:42050–42057. https://doi.org/10.1021/acsami.8b15917

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21890742), National Key R&D Program of China (2019YFA0709300), and Beijing Municipal Science and Technology Commission (2182036).

Author information

Authors and Affiliations

Authors

Contributions

Tingxiu Yan: carried out the experiment, data analysis, writing—original draft.

Shaofang Zhang: carried out the experiment, data analysis.

Yuemeng Yang: data analysis, writing—original draft.

Yuetong Li: data analysis, writing—original draft.

Li-Ping Xu: supervision, funding acquisition.

Corresponding author

Correspondence to Li-Ping Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1

Materials and reagents, instruments, oligonucleotides, details of the experimental section, and optimization results of assay conditions are listed in the supplementary information (DOCX 210 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, T., Zhang, S., Yang, Y. et al. Biomineralization-inspired magnetic nanoflowers for sensitive miRNA detection based on exonuclease-assisted target recycling amplification. Microchim Acta 189, 260 (2022). https://doi.org/10.1007/s00604-022-05351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05351-0

Keywords

Navigation