Skip to main content
Log in

An ultrasensitive sandwich-type electrochemical aptasensor using silver nanoparticle/titanium carbide nanocomposites for the determination of Staphylococcus aureus in milk

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel sandwich-type electrochemical aptasensor for the detection of Staphylococcus aureus (S. aureus) was developed. S. aureus aptamers were self-assembled onto the surface of a glassy carbon electrode (GCE) modified with nanocomposites comprising titanium carbide embedded with silver nanoparticles (AgNPs@Ti3C2) through hydrogen bonds and the chelation interaction between phosphate groups and Ti ions. In addition, the self-assembled aptamers were immobilized on CuO/graphene (GR) nanocomposites via π–π stacking interactions to serve as a signal probe. In the presence of the target S. aureus, the sandwich-type recognition system reacted on the surface of GCE, and the CuO/GR nanocomposites catalyzed the hydrogen peroxide + hydroquinone reaction producing a strong current response. Under the optimal experimental conditions, the current response of the aptasensor was linearly correlated with the concentration of S. aureus (52–5.2 × 107 CFU mL−1) with a low detection limit of 1 CFU mL−1. The aptasensor displayed good repeatability and excellent selectivity for S. aureus detection. Moreover, this aptasensor was applied to the detection of S. aureus in cow, sheep, and goat milk samples, affording recoveries ranging from 92.64 to 109.58%. This research provides a new platform for the detection of pathogenic bacteria and other toxic and harmful substances in food.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fabijan A, Lin R, Ho J, Maddocks S, Ben Zakour N, Iredell J (2020) Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol 5:465–472

    Article  CAS  Google Scholar 

  2. Qian J, Huang D, Ni D, Zhao J, Shi Z, Fang M, Xu Z (2022) A portable CRISPR Cas12a based lateral flow platform for sensitive detection of Staphylococcus aureus with double insurance. Food Control 132:108485

  3. Ouyang Q, Wang L, Ahmad W, Yang Y, Chen Q (2021) Upconversion nanoprobes based on a horseradish peroxidase-regulated dual-mode strategy for the ultrasensitive detection of Staphylococcus aureus in meat. J Agric Food Chem 69:9947–9956

    Article  CAS  PubMed  Google Scholar 

  4. Liu S, Wang B, Sui Z, Wang Z, Li L, Zhen X, Zhao W, Zhou G (2021) Faster detection of Staphylococcus aureus in milk and milk powder by flow cytometry. Foodborne Pathog Dis 18:346–353

    Article  CAS  PubMed  Google Scholar 

  5. Bennett RW (2005) Staphylococcal enterotoxin and its rapid identification in foods by enzyme-linked immunosorbent assay-based methodology. J Food Protect 68:1264–1270

    Article  CAS  Google Scholar 

  6. Alarcón B, Vicedo B, Aznar R (2010) PCR-based procedures for detection and quantification of Staphylococcus aureus and their application in food. J Appl Microbiol 100:352–364

    Article  CAS  Google Scholar 

  7. Guo Y, Zheng Y, Liu Y, Feng X, Dong Q, Li J, Wang J, Zhao C (2022) A concise detection strategy of Staphylococcus aureus using N-Succinyl-Chitosan-dopped bacteria-imprinted composite film and AIE fluorescence sensor. J Hazard Mater 423:126934

    Article  CAS  PubMed  Google Scholar 

  8. Di F, Schirone M, Visciano P, Portanti O, Armillotta G, Persiani T, Di G, Tittarelli M, Luciani M (2019) Development of a capture ELISA for rapid detection of Salmonella enterica in food samples. Food Anal Method 12:322–330

    Article  Google Scholar 

  9. Wang L, Huo X, Qi W, Xia Z, Li Y, Lin J (2020) Rapid and sensitive detection of Salmonella typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta 211:120715

    Article  CAS  PubMed  Google Scholar 

  10. Fang S, Song D, Zhou Y, Chen Y, Zhu A, Long F (2021) Simultaneous and sensitive determination of Escherichia coli O157:H7 and Salmonella typhimurium using evanescent wave dual-color fluorescence aptasensor based on micro/nano size effect. Biosens Bioelectron 185:113288

    Article  CAS  PubMed  Google Scholar 

  11. Clark S, Remcho V (2002) Aptamers as analytical reagents. Electrophoresis 23:1335–1340

    Article  CAS  PubMed  Google Scholar 

  12. Kim Y, Ahmad Raston N, Bock GuM (2016) Aptamer-based nanobiosensors. Biosens Bioelectron 76:2–19

    Article  PubMed  CAS  Google Scholar 

  13. Chen Q, Gao R, Jia L (2021) Enhancement of the peroxidase-like activity of aptamers modified gold nanoclusters by bacteria for colorimetric detection of salmonella typhimurium. Talanta 221:121476

    Article  CAS  PubMed  Google Scholar 

  14. Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, Jiang Y (2012) Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of salmonella typhimurium and staphylococcus aureus. Anal Chim Acta 723:1–6

    Article  CAS  PubMed  Google Scholar 

  15. Zhu A, Ali S, Xu Y, Ouyang Q, Chen Q (2020) A SERS aptasensor based on AUNPS functionalized PDMS film for selective and sensitive detection of staphylococcus aureus - sciencedirect. Biosens Bioelectron 172:112806

    Article  PubMed  CAS  Google Scholar 

  16. Jiang H, Sun Z, Guo Q, Weng X (2021) Microfluidic thread-based electrochemical aptasensor for rapid detection of Vibrio parahaemolyticus. Biosens Bioelectron 182:113191

    Article  CAS  PubMed  Google Scholar 

  17. Mohammadniaei M, Koyappayil A, Sun Y, Min J, Lee M (2020) Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens Bioelectron 159:112208

    Article  CAS  PubMed  Google Scholar 

  18. Meidani K, Cao Z, Barati Farimani A (2021) Titanium carbide MXene for water desalination: a molecular dynamics study. ACS Appl Nano Mater 4:6145–6151

    Article  CAS  Google Scholar 

  19. Tang Q, Sun Z, Deng S, Wang H, Wu Z (2019) Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. J Colloid Interface Sci 564:406–417

    Article  PubMed  CAS  Google Scholar 

  20. Dai C, Lin H, Xu G, Liu Z, Wu R, Chen Y (2017) Biocompatible 2D titanium carbide (MXenes) composite nanosheets for Ph-responsive MRI-guided tumor hyperthermia. Chem Mater 29:8637–8652

    Article  CAS  Google Scholar 

  21. Zhu X, Zhang Y, Liu M, Liu Y (2021) 2D titanium carbide MXenes as emerging optical biosensing platforms. Biosens Bioelectron 171:112730

    Article  CAS  PubMed  Google Scholar 

  22. Sinha A, Dhanjai ZH, Huang Y, Lu X, Chen J, Jain R (2018) MXene: an emerging material for sensing and biosensing. Trends Anal Chem 105:424–435

    Article  CAS  Google Scholar 

  23. Wu Q, Li N, Wang Y, Xu Y, Wu J, Jia G, Ji F, Fang X, Chen F, Cui X (2020) Ultrasensitive and selective determination of carcinoembryonic antigen using multifunctional ultrathin amino-functionalized Ti. Anal Chem 92:3354–3360

    Article  CAS  PubMed  Google Scholar 

  24. Shang T, Lin Z, Qi C, Liu X, Li P, Tao Y, Wu Z, Li D, Simon P, Yang Q (2019) 3D Macroscopic architectures from self-assembled MXene hydrogels. Adv Funct Mater 29:1903960

    Article  CAS  Google Scholar 

  25. Huang R, Liao D, Chen S, Yu J, Jiang X (2020) A strategy for effective electrochemical detection of hydroquinone and catechol: decoration of alkalization-intercalated Ti3C2 with MOF-derived N-doped porous carbon. Sensors Actuators B Chem 320:128386

    Article  CAS  Google Scholar 

  26. Wang X, Wu Q, Shan Z, Huang Q (2011) BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens Bioelectron 26(8):3614–3619

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L, Hai X, Xia C, Chen X, Wang J (2017) Growth of CuO nanoneedles on graphene quantum dots as peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose. Sensors Actuators B Chem 248:374–384

    Article  CAS  Google Scholar 

  28. Chen W, Chen J, Feng Y, Hong L, Chen Q, Wu L, Lin X, Xia X (2012) Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 137:1706–1712

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Tang Z, Fu X, Xu Y (2011) Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5:7426–7435

    Article  CAS  PubMed  Google Scholar 

  30. Phaedon A, Christos D (2012) Graphene: synthesis and applications. Mater Today 15:86–97

    Article  CAS  Google Scholar 

  31. Cao X, Li S, Chen L, Ding H, Xu H, Huang Y, Li J, Liu N, Cao W (2009) Combining use of a panel of SSDNA aptamers in the detection of staphylococcus aureus. Nucleic Acids Res 37:4621–4628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shinde P, Mane P, Chakraborty B, Sekhar Rout C (2021) Spinel NiFe2O4 nanoparticles decorated 2D Ti3C2 MXene sheets for efficient water splitting: experiments and theories. J Colloid Interface Sci 602:232–241

    Article  CAS  PubMed  Google Scholar 

  33. Roushani M, Shahdost-fard F (2015) A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection. Sensor Actuators B Chem 207:764–771

    Article  CAS  Google Scholar 

  34. Tu X, Xie Y, Gao F, Ma X, Lin X, Huang XG, Qu FL, Ping L, Yu YF, Lu LM (2020) Self-template synthesis of flower-like hierarchical graphene/copper oxide@copper(II) metal-organic framework composite for the voltammetric determination of caffeic acid. Microchim Acta 187:258

    Article  CAS  Google Scholar 

  35. Wu S, Duan N, Qiu Y, Li J, Wang Z (2017) Colorimetric aptasensor for the detection of Salmonella enterica serovar Typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics. Int J Food Microbiol 261:42–48

    Article  CAS  PubMed  Google Scholar 

  36. Tombelli S, Mascini M (2010) Aptamers biosensors for pharmaceutical compounds. Comb Chem High Throughput Screen 13:641–649

    Article  CAS  PubMed  Google Scholar 

  37. Ding X, Li C, Wang L, Feng L, Han D, Wang W (2019) Fabrication of hierarchical g-C3N4/MXene-AgNPs nanocomposites with enhanced photocatalytic performances. Mater Lett 247:174–177

    Article  CAS  Google Scholar 

  38. Zou G, Zhang Z, Guo J, Liu B, Zhang Q, Fenandez C, Peng Q (2016) Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high-rates. ACS Appl Mater Inter 8:22280–32228

    Article  CAS  Google Scholar 

  39. Hajipour P, Bahrami A, Eslami A, Hosseini-Abari A, Ranjbar H (2020) Chemical bath synthesis of CuO-GO-Ag nanocomposites with enhanced antibacterial properties. J Alloys Compd 821:153456

    Article  CAS  Google Scholar 

  40. Xu W, Sakran M, Fei J, Li X, Weng C, Yang W, Zhu G, Zhu W, Zhou X (2021) Electrochemical biosensor based on HRP/Ti3C2/nafion film for determination of hydrogen peroxide in serum samples of patients with acute myocardial infarction. ACS Biomater Sci Eng 7:2767–2773

    Article  CAS  PubMed  Google Scholar 

  41. Ebrahimi-Tazangi F, Beitollahi H, Hekmatara H, Seyed-Yazdi J (2021) Design of a new electrochemical sensor based on the CuO/GO nanocomposites: simultaneous determination of Sudan I and Bisphenol A. J Iran Chem Soc 18:191–199

    Article  CAS  Google Scholar 

  42. Ding J, Meng W, Du X, Qin M, Shan X, Chen Z (2022) One-pot synthesis of ZnO quantum dots/N-doped Ti3C2 MXene: tunable nitrogen-doping properties and efficient electrochemiluminescence sensing. Chem Eng J 430:132771

    Article  CAS  Google Scholar 

  43. Li Y, Ding L, Liang Z, Xue Y, Cui H, Tian J (2019) Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2. Chem Eng J 383:123178

    Article  CAS  Google Scholar 

  44. Pan Z, Cao F, Hu X, Ji X (2019) Correction: a facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J Mater Chem A 7:10815

    Article  CAS  Google Scholar 

  45. Sun B, Qiu P, Liang Z, Xue Y, Zhang X, Yang L, Cui H, Tian J (2021) The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis. Chem Eng J 406:127177

    Article  CAS  Google Scholar 

  46. Pandey R, Rasool K, Vinod E, Aissa B, Gogotsi Y, Mahmoud K (2018) Ultrahigh-flux and fouling-resistant membrane based on layered silver/MXene(Ti3C2Tx) nanosheets. J Mater Chem A 6(8):3522–3533

    Article  CAS  Google Scholar 

  47. Karikalan N, Kubendhiran S, Chen S, Sundaresan P, Karthik R (2017) Electrocatalytic reduction of nitroaromatic compounds by activated graphite sheets in the presence of atmospheric oxygen molecules. J Catal 356:43–52

    Article  CAS  Google Scholar 

  48. Zhang X, Du J, Wu D, Long X, Wang D, Xiong J, Xiong W, Liao X (2021) Anchoring metallic MoS2 quantum dots over MWCNTs for highly sensitive detection of postharvest fungicide in traditional Chinese medicines. ACS Omega 6(2):1488–1496. https://doi.org/10.1021/acsomega.0c05253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Skoog D, Holler F, Nieman T (1998) Principles of instrumental analysis. Saunders College Publication, Philadelphia, p 849

  50. Zhang H, Yao S, Song X, Xu K, Wang J, Li J, Zhao C, Jin M (2021) One-step colorimetric detection of Staphylococcus aureus based on target-induced shielding against the peroxidase mimicking activity of aptamer-functionalized gold-coated iron oxide nanocomposites. Talanta 232:122448

    Article  CAS  PubMed  Google Scholar 

  51. Zhu A, Ali S, Xu Y, Ouyang Q, Chen Q (2020) A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of staphylococcus aureus. Biosens Bioelectron 172:112806

    Article  PubMed  CAS  Google Scholar 

  52. Cai R, Yin F, Zhang Z, Tian Y, Zhou N (2019) Functional chimera aptamer and molecular beacon based fluorescent detection of staphylococcus aureus with strand displacement-target recycling amplification. Anal Chim Acta 1075:128–136

    Article  CAS  PubMed  Google Scholar 

  53. Jia F, Duan N, Wu S, Ma X, Xia Y, Wang Z, Wei X (2014) Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim Acta 181(9–10):967–974. https://doi.org/10.1007/s00604-014-1195-8

    Article  CAS  Google Scholar 

  54. Reich P, Stoltenburg R, Strehlitz B, Frense D, Beckmann D (2017) Development of an impedimetric aptasensor for the detection of Staphylococcus aureus. Int J Mol Sci 18:2484

    Article  PubMed Central  CAS  Google Scholar 

  55. Sohouli E, Ghalkhani M, Zargar T, Joseph Y, Rahimi-Nasrabadi M, Ahmadi F, Plonska-Brzezinska ME, Ehrlich H (2022) A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus. Electrochim Acta 403:139633. https://doi.org/10.1016/j.electacta.2021.139633

    Article  CAS  Google Scholar 

  56. Gustavo A, Zelada-Guillén JL, Sebastián-Avila BP, Riu J, Rius FX (2012) Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens Bioelectron 31(1):226–232

    Article  CAS  Google Scholar 

  57. Abbaspour A, Norouz-Sarvestani F, Noon A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens Bioelectron 68:149–155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the Science and Technology Program of Xi’an City (20NYYF0018), the Project of Cooperating to Build Jinchang Meat Sheep Experimental Demonstration Base A289021806 (K3320219064), and the Graduate Innovation Fund of Shaanxi Normal University (2021CBLY007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxuan Song or Bini Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51590 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, Y., Peng, H., Zhang, F. et al. An ultrasensitive sandwich-type electrochemical aptasensor using silver nanoparticle/titanium carbide nanocomposites for the determination of Staphylococcus aureus in milk. Microchim Acta 189, 276 (2022). https://doi.org/10.1007/s00604-022-05349-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05349-8

Keywords

Navigation