Skip to main content
Log in

Plot-on-demand integrated paper-based sensors for drop-volume voltammetric monitoring of Pb(II) and Cd(II) using a bismuth nanoparticle-modified electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The fabrication of fully ink-drawn fluidic electrochemical paper-based analytical devices (ePADs) is reported for the determination of trace Pb(II) and Cd(II) by differential pulse anodic stripping voltammetry (DPASV). The fluidic pattern was formed on the paper substrate using an inexpensive computer-controlled x–y plotter and a commercial hydrophobic marker pen. Then, electrodes were deposited on the devices using a second x–y plotting step with a commercial technical pen filled with a graphite-based conductive ink prepared in house. The fabrication parameters of the ePADs were studied by cyclic voltammetry using the ferro/ferri couple as a probe and by scanning electron microscopy. The ePADs, featuring a bismuth nanoparticle-modified working electrode, were applied to the determination of Pb(II) and Cd(II) by DPASV. The chemical and instrumental conditions were studied. The limits of detection were 3.1 μg L−1 for Cd(II) and 4.5 μg L−1 for Pb(II) whereas the between-device reproducibility (expressed as the % relative standard deviation of the response at 6 different ePADs) was < 14%. Each ePAD requires 120 s to fabricate and costs less than 0.15 € in terms of consumables. The ePADs are suitable for the on-site determination of Pb(II) and Cd(II) in environmental and food samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Masindi V, Muedi K (2018) Environmental contamination by heavy metals. In: El-Din H; Saleh M, Aglan RF (ed) Heavy Metals, Intech Open

  2. Chowdhury S, Mazumder MAJ, Al-Attas O, Husain T (2016) Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ 569–570:476–488

    Article  PubMed  Google Scholar 

  3. Azeh Engwa G, Udoka Ferdinand P, Nweke Nwalo F, Unachukwu MN (2019) Mechanism and health effects of heavy metal toxicity In humans. In: Karcioglu O, Arslan, B. (ed) Poisoning in the Modern World - New Tricks for an Old Dog, IntechOpen

  4. Fernandez Luqueno F, Lopez Valdez F, Gamero Melo P, Luna S, Aguilera Gonzalez EN, Martínez AI, García MS, Hernandez Martínez G, Herrera Mendoza R, Alvarez M (2013) Heavy metal pollution in drinking water - a global risk for human health: a review. Afr J Environ Sci Technol 7:567–584

    Google Scholar 

  5. Chouhan B, Meena P, Poonar N (2016) Effect of heavy metal ions in water on human health. Int J Sci Eng Res 4:2015–2017

    Google Scholar 

  6. Wong C, Roberts SM (2022) Review of regulatory reference values and background levels for heavy metals in the human diet. Regul Toxicol Pharmacol 130:105–122

    Article  Google Scholar 

  7. Munir N, Jahangeer M, Bouyahya A, El Omari N, Ghchime R, Balahbib A, Aboulaghras S, Mahmood Z, Akram M, Ali Shah SM, Mikolaychik IN, Derkho M, Rebezov M, Venkidasamy B, Thiruvengadam M, Shariati MA (2022) Heavy metal contamination of natural foods is a serious health issue: a review. Sustainability 14:161

    Article  CAS  Google Scholar 

  8. The Drinking Water Directive. https://ec.europa.eu/environment/water/water-drink/legislation_en.html. Accessed 31 March 2022

  9. Safe Drinking Water Act. https://www.epa.gov/sdwa. Accessed 31 March 2022

  10. Commission Regulation (EU) 2021/1317 of 9 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs. https://eur-lex.europa.eu/eli/reg/2021/1317/oj. Accessed 31 March 2022

  11. Commission Regulation (EU) 2021/1323 of 10 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in certain foodstuffs. https://eur-lex.europa.eu/eli/reg/2021/1323/oj. Accessed 31 March 2022

  12. Commission Regulation (EU) 2015/186 of 6 February 2015 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, fluorine, lead, mercury, endosulfan and Ambrosia seeds. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32015R0186. Accessed 31 March 2022

  13. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32002L0032. Accessed 31 March 2022

  14. Bhattacharjee T, Goswami M (2018) Heavy metals (As, Cd & Pb) toxicity & detection of these metals in ground water sample: a review on different techniques. Int J Eng Sci Invention 7:12–21

    Google Scholar 

  15. Bulska E, Ruszczyńska A (2017) Analytical techniques for trace element determination. Phys Sci Rev 2:20178002

    Google Scholar 

  16. Lu Y, Liang X, Niyungeko C, Zhou J, Xu J, Tian G (2018) A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 178:324–338

    Article  CAS  PubMed  Google Scholar 

  17. Omanović D, Garnier C, Gibbon-Walsh K, Pižeta I (2015) Electroanalysis in environmental monitoring: tracking trace metals—a mini review. Electrochem Commun 61:78–83

    Article  Google Scholar 

  18. Alghamdi AH (2010) Applications of stripping voltammetric techniques in food analysis. Arab J Chem 3:1–7

    Article  CAS  Google Scholar 

  19. Thomas S, Ahmadi M, Nguyen TA, Afkhami A, Madrakian T (2021) Micro- and nanotechnology enabled applications for portable miniaturized analytical systems, 1st Edit. Elsevier

    Google Scholar 

  20. Zhang W, Wang R, Luo F, Wang P, Lin Z (2020) Miniaturized electrochemical sensors and their point-of-care applications. Chin Chem Lett 31:589–600

    Article  CAS  Google Scholar 

  21. Lace A, Cleary J (2021) A review of microfluidic detection strategies for heavy metals in water. Chemosensors 9:60

    Article  CAS  Google Scholar 

  22. Suntornsuk W, Suntornsuk L (2020) Recent applications of paper-based point-of-care devices for biomarker detection. Electrophoresis 41:287–305

    Article  CAS  PubMed  Google Scholar 

  23. Kung CT, Hou CY, Wang YN, Fu LM (2019) Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sens Actuat B Chemical 301:126855

    Article  CAS  Google Scholar 

  24. Boobphahom M, Nguyet L, Soum V, Pyun N, Kwon OS, Rodthongkum N, Shin K (2020) Recent advances in microfluidic paper-based analytical devices toward high-throughput screening. Molecules 25:2970

    Article  CAS  PubMed Central  Google Scholar 

  25. Ozer T, McMahon C, Henry CS (2020) Advances in paper-based analytical devices. Ann Rev Anal Chem 13:85–10

    Article  Google Scholar 

  26. Noviana E, McCord CP, Clark KM, Jang I, Henry CS (2020) Electrochemical paper-based devices: sensing approaches and progress toward practical applications. Lab Chip 20:9–34

    Article  CAS  PubMed  Google Scholar 

  27. Ataide VN, Mendes LF, Gama LILM, de Araujo WR, Paixao TRLC (2020) Electrochemical paper-based analytical devices: ten years of development. Anal Methods 12:1030–1054

    Article  Google Scholar 

  28. Mazurkiewicz W, Podrażka M, Jarosińska E, KappalakandyValapil E, Wiloch M, Jönsson-Niedziółka M, Witkowska Nery E (2020) Paper-based electrochemical sensors and how to make them (work). ChemElectroChem 7:2939–3295

    Article  CAS  Google Scholar 

  29. Mettakoonpitak J, Boehle K, Nantaphol S, Teengam P, Adkins JA, Srisa-Art M, Henry CS (2016) Electrochemistry on paper-based analytical devices: a review. Electroanalysis 28:1420–1436

    Article  CAS  Google Scholar 

  30. Zhu CC, Bao N, Huo XL (2020) Paper-based electroanalytical devices for stripping analysis of lead and cadmium in children’s shoes. RSC Adv 10:41482–41487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng QM, Zhang Q, Shi CG, Xu JJ, Bao N, Gu HY (2013) Using nanostructured conductive carbon tape modified with bismuth as the disposable working electrode for stripping analysis in paper-based analytical devices. Talanta 10:235–240

    Article  Google Scholar 

  32. Bi XM, Wang HR, Ge LQ, Zhou DM, Xu JZ, Gu HY, Bao N (2018) Gold-coated nanostructured carbon tape for rapid electrochemical detection of cadmium in rice with in situ electrodeposition of bismuthin paper-based analytical devices. Sens Actuat B 260:475–479

    Article  CAS  Google Scholar 

  33. Pokpas K, Jahed N, Iwuoha E (2019) Tuneable, pre-stored paper-based electrochemical cells (μPECs): an adsorptive stripping voltammetric approach to metal analysis. Electrocatalysis 10:352–364

    Article  CAS  Google Scholar 

  34. Nunez-Bajo E, Blanco-Lopez MC, Costa-García A, Fernandez-Abedul MT (2017) Electrogeneration of gold nanoparticles on porous-carbon paper-based electrodes and application to inorganic arsenic analysis in white wines by chronoamperometric stripping. Anal Chem 89:6415–6423

    Article  CAS  PubMed  Google Scholar 

  35. Sánchez-Calvo A, Blanco-López MC, Costa-García A (2020) Paper-based working electrodes coated with mercury or bismuth films for heavy metals determination. Biosensors 10:52

    Article  PubMed Central  Google Scholar 

  36. Ninwong B, Ratnarathorn N, Henry CS, Mace CR, Dungchai W (2020) Dual sample preconcentration for simultaneous quantification of metal ions using electrochemical and colorimetric assays. ACS Sens 5:3999–4008

    Article  CAS  PubMed  Google Scholar 

  37. Thangphatthanarungruang J, Lomae A, Chailapakul O, Chaiyo S, Siangproh W (2021) A Low-cost paper-based diamond electrode for trace copper analysis at on-site environmental area. Electroanalysis 33:226–232

    Article  CAS  Google Scholar 

  38. Pungjunun K, Chaiyo S, Jantrahong I, Nantaphol S, Siangproh W, Chailapakul O (2018) Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device. Microchim Acta 185:324

    Article  Google Scholar 

  39. Nurak T, Praphairaksit N, Chailapakul O (2013) Fabrication of paper-based devices by lacquer spraying method for the determination of nickel(II) ion in wastewater. Talanta 114:291–296

    Article  CAS  PubMed  Google Scholar 

  40. Mettakoonpitak J, Volcken J, Henry CS (2020) Janus electrochemical paper-based analytical devices for metals detection in aerosol samples. Anal Chem 92:1439–1446

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Sun J, Tong J, Guan X, Bian C, Xia S (2018) Paper-based sensor chip for heavy metal ion detection by SWSV. Micromachines 9:150

    Article  PubMed Central  Google Scholar 

  42. Pungjunun K, Nantaphol S, Praphairaksit N, Siangproh W, Chaiyo S, Chailapakul O (2020) Enhanced sensitivity and separation for simultaneous determination of tin and lead using paper-based sensors combined with a portable potentiostat. Sens Actuat B Chemical 318:128241

    Article  CAS  Google Scholar 

  43. Cinti S, De Lellis B, Moscone D, Arduini F (2017) Sustainable monitoring of Zn(II) in biological fluids using office paper. Sens Actuat 253:1199–1206

    Article  CAS  Google Scholar 

  44. Pokpas K, Jahed N, McDonald E, Bezuidenhout P, Smith S, Land K, Iwuoha I (2020) Graphene-AuNP enhanced inkjet-printed silver nanoparticle paper electrodes for the detection of nickel(II)-dimethylglyoxime [Ni(DMGH2)] complexes by adsorptive cathodic stripping voltammetry (AdCSV). Electroanalysis 32:3017–3031

    Article  CAS  Google Scholar 

  45. Soulis D, Trachioti M, Kokkinos C, Economou A, Prodromidis M (2021) Single-use fluidic electrochemical paper-based analytical devices fabricated by pen plotting and screen-printing for on-site rapid voltammetric monitoring of Pb(II) and Cd(II). Sensors 21:6908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li Z, Liu H, He X, Xu F, Li F (2018) Pen-on-paper strategies for point-of-care testing of human health. Trends Anal Chem 108:50–64

    Article  CAS  Google Scholar 

  47. Nie J, Zhang Y, Lin L, Zhou C, Li S, Zhang L, Li J (2012) Low-cost fabrication of paper-based microfluidic devices by one-step plotting. Anal Chem 84:6331–6335

    Article  CAS  PubMed  Google Scholar 

  48. Dossi N, Petrazzi S, Toniolo R, Tubaro F, Terzi F, Piccin E, Svigelj R, Bontempelli G (2017) Digitally controlled procedure for assembling fully drawn paper-based electroanalytical platforms. Anal Chem 89:10454–10460

    Article  CAS  PubMed  Google Scholar 

  49. Ghaderinezhad F, Amin R, Temirel M, Yenilmez B, Wentworth A, Tasoglu S (2017) High-throughput rapid-prototyping of low-cost paper-based microfluidics. Sci Rep 7:3553

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ariño C, Serrano N, Díaz-Cruz JM, Esteban M (2017) Voltammetric determination of metal ions beyond mercury electrodes A review. Anal Chim Acta 990:11–53

    Article  PubMed  Google Scholar 

  51. Kokkinos C, Economou A, Raptis I, Efstathiou CE (2008) Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb(II) and Cd(II) by anodic stripping voltammetry. Electrochim Acta 53:5294–5299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Economou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 300 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soulis, D., Pagkali, V., Kokkinos, C. et al. Plot-on-demand integrated paper-based sensors for drop-volume voltammetric monitoring of Pb(II) and Cd(II) using a bismuth nanoparticle-modified electrode. Microchim Acta 189, 240 (2022). https://doi.org/10.1007/s00604-022-05335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05335-0

Keywords

Navigation