Skip to main content
Log in

Boron carbon oxynitride quantum dots-based ratio fluorescent nanoprobe assisted with smartphone for visualization detection of phosphate

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A ratio fluorescence nanoprobe was constructed by simple mixing BCNO QDs with 8-hydroxyquinoline-5-sulfonic acid (HQSA), which had an obvious fluorescence peak at 420 nm and a weak fluorescence peak at 500 nm, corresponding to the BCNO QDs and HQSA, respectively. This fluorescence probe takes stable fluorescence of BCNO QDs as an internal standard, based on HQSA chelating enhanced fluorescence and specificity of phosphate in the presence of Mg2+, which realizes a rapid and sensitive detection of phosphate with good linearity in the range 0.3–50 μM and 50–100 μM and a detection limit of 0.073 μM. The recovery is between 94.1 and 111% and the relative standard deviations (RSDs) below 10%. At the same time, we took color photos of the reaction solution under 310-nm UV lamp with smartphones for visual detection through RGB data image analysis, which make the detection easier and faster. The proposed method provides a new strategy for the intelligent online detection of other targets in complex environment samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Song X, Ma Y, Ge X et al (2017) Europium-based infinite coordination polymernanospheres as an effective fluorescence probe for phosphate sensing. RSC Adv 7:8661–8669. https://doi.org/10.1039/C6RA27819A

    Article  CAS  Google Scholar 

  2. Warwick C, Guerreiro A, Soares A et al (2013) Sensing and analysis of soluble phosphates in environmental samples: a review. Biosens. Bioelectron 41:1–11. https://doi.org/10.1016/j.bios.2012.07.012

    Article  CAS  PubMed  Google Scholar 

  3. Sarwar M, Leichner J, Naja G-M et al (2019) Smart-phone, paper-based fluorescent sensor for ultra-low inorganic phosphate detection in environmental samples. Microsyst Nanoeng 5:56. https://doi.org/10.1038/s41378-019-0096-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cosnier S, Gondran C, Watelet J-C et al (1998) A bienzyme electrode (alkaline phosphatase polyphenol oxidase) for the amperometric determination of phosphate. Anal Chem 70:3952–3956. https://doi.org/10.1021/ac980125a

    Article  CAS  Google Scholar 

  5. Sateanchok S, Pankratova N, Cuartero M et al (2018) In-line seawater phosphate detection with ion-exchange membrane reagent delivery. ACS Sens 3:2455–2462. https://doi.org/10.1021/acssensors.8b01096

    Article  CAS  PubMed  Google Scholar 

  6. Jonca J, Giraud W, Barus C et al (2013) Reagentless and silicate interference free electrochemical phosphate determination in seawater. Electrochim Acta 88:165–169. https://doi.org/10.1016/j.electacta.2012.10.012

    Article  CAS  Google Scholar 

  7. Han C, Geng J, Xie X et al (2012) Determination of phosphite in a eutrophic freshwater lake by suppressed conductivity ion chromatography. Environ Sci Technol 46:10667–10674. https://doi.org/10.1021/es300771a

    Article  CAS  PubMed  Google Scholar 

  8. Wang K-P, Zhang S-J, Lv C-D et al (2017) A highly sensitive and selective turn on fluorescent sensor for dihydrogen phosphate in living cells. Sens Actuators B Chem 247:791–796. https://doi.org/10.1016/j.snb.2017.03.052

    Article  CAS  Google Scholar 

  9. Yang C, Jing X, Rui Z et al (2013) An efficient Eu-based anion-selective chemosensor:synthesis, sensing properties, and its use for the fabrication of fluorescent hydrogel probe. Sens Actuators B Chem 177:437–444. https://doi.org/10.1016/j.snb.2012.11.065

    Article  CAS  Google Scholar 

  10. Tsogas G-Z, Giokas D-L, Vlessidis A-G et al (2016) Flow through fluorescence detection of phosphate in human saliva based on sensitized turn-on photoluminescence of CdS quantum dots. Anal Lett 49:618–626. https://doi.org/10.1080/00032719.2014.979352

    Article  CAS  Google Scholar 

  11. Xia Y-S, Wang J-J, Zhang Y-Z et al (2012) Quantum dot based turn-on fluorescent probes for anion sensing. Nanoscale 19:5763–6074. https://doi.org/10.1039/C2NR31809A

    Article  Google Scholar 

  12. Song Y, Li Y, Liu Y-L et al (2015) Highly sensitive and selective detection of phosphate using novel highly photoluminescent water-soluble Mn-doped ZnTe/ZnSe quantum dots. Talanta 144:680–685. https://doi.org/10.1016/j.talanta.2015.07.025

    Article  CAS  PubMed  Google Scholar 

  13. Liu F, Nattestad A, Naficy S et al (2019) Fluorescent carbon and oxygen doped hexagonal boron nitride powders as printing ink for anticounterfeit applications. Adv Opt Mater 7:1901380. https://doi.org/10.1002/adom.201901380

    Article  CAS  Google Scholar 

  14. Yang Y-F, Chen J-J, Mao Z-Y et al (2017) Facile synthesis of BCNO yellow-emitting phosphors applications for white leds by microwave heating. Acta Metall Sin-Engl 30:113–119. https://doi.org/10.1007/s40195-016-0495-x

    Article  CAS  Google Scholar 

  15. Qi X, Zhang H, Zhu M et al (2016) Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes. RSC Adv 6:79090–79094. https://doi.org/10.1039/C6RA16744F

    Article  CAS  Google Scholar 

  16. Zhang J-H, Zhang B, Ren M-X et al (2017) Mechanistic insights into tunable luminescence and persistent luminescence of the full-color-emitting BCNO phosphors. Carbon 122:176–184. https://doi.org/10.1016/j.carbon.2017.06.054

    Article  CAS  Google Scholar 

  17. Abdelhamid H-N, Wu H-F (2018) Selective biosensing of Staphylococcus aureus using chitosan quantum dots. Spectrochim Acta A Mol Biomol Spectrosc 188:50–56. https://doi.org/10.1016/j.saa.2017.06.047

    Article  CAS  PubMed  Google Scholar 

  18. Abdelhamid H-N, Chen Z-Y, Wu H-F et al (2017) Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots. Anal Bioanal Chem 409(21):4943–4950. https://doi.org/10.1007/s00216-017-0433-4

    Article  CAS  PubMed  Google Scholar 

  19. Wu Z, Zhou Y, Huang H et al (2021) BCNO QDs and ROS synergistic oxidation effect on fluorescence enhancement sensing of tetracycline. Sens Actuators B Chem 332:129530. https://doi.org/10.1016/j.snb.2021.129530

    Article  CAS  Google Scholar 

  20. Sun M-F, Liu J-L, Zhou Y et al (2020) High-efficient electrochemiluminescence of BCNO quantum dot equipped boron active sites with unexpected catalysis for ultrasensitive detection of microRNA. Anal Chem 21:14723–14729. https://doi.org/10.1021/acs.analchem.0c03289

    Article  CAS  Google Scholar 

  21. Jia X-B, Li L-L, Yu J-J et al (2018) Facile synthesis of BCNO quantum dots with applications for ion detection, chemosensor and fingerprint identification. Spectrochim Acta A 203:214–221. https://doi.org/10.1016/j.saa.2018.05.099

    Article  CAS  Google Scholar 

  22. Liu F, Lei T-T, Zhang Y-L et al (2021) A BCNO QDs-MnO2 nanosheets based fluorescence “off-on-off” and colorimetric sensor with smartphone detector for the detection of organophosphorus pesticides. Anal Chim Acta 1184:339026. https://doi.org/10.1016/j.aca.2021.339026

    Article  CAS  PubMed  Google Scholar 

  23. Liu F, Wang M-M, He Y et al (2022) Smartphone-assisted ratiometric fluorescence sensing platform for the detection of doxycycline based on BCNO QDs and calcium ion. Microchim Acta 189:113. https://doi.org/10.1007/s00604-022-05224-6

    Article  CAS  Google Scholar 

  24. Renaud R, Alexandre N, Abdelkarim A et al (2015) Development of a direct and continuous phospholipase D assay based on the chelation-enhanced fluorescence property of 8-hydroxyquinoline. Anal Chem 88:666–674. https://doi.org/10.1021/acs.analchem.5b02332

    Article  CAS  Google Scholar 

  25. Li S-D, Lu J, Wei M et al (2010) Tris(8-hydroxyquinoline-5-sulfonate) aluminum intercalated Mg-Al layered double hydroxide with blue luminescence by hydrothermal synthesis. Adv Funct Mater 20:2848–2856. https://doi.org/10.1002/adfm.201000200

    Article  CAS  Google Scholar 

  26. Lv X-D, Yang J, Fu Y-Q et al (2010) White light emission from Mn2+ doped ZnS nanocrystals through the surface chelating of 8-hydroxyquinoline-5-sulfonic acid. Nanotechnology 21:115702. https://doi.org/10.1088/0957-4484/21/11/115702

    Article  CAS  Google Scholar 

  27. Zhang Z-P, Feng J-Y, Huang P-C et al (2019) Ratiometric fluorescent detection of phosphate in human serum with functionalized gold nanoclusters based on chelation enhanced fluorescence. Sens Actuators B Chem 298:126891. https://doi.org/10.1016/j.snb.2019.126891

    Article  CAS  Google Scholar 

  28. Shults M-D, Imperiali B (2003) Versatile fluorescence probes of protein kinase activity. J Am Chem Soc 125:14248–14249. https://doi.org/10.1021/ja0380502

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Lu Z, Jing L et al (2013) Luminescence properties of BCNO phosphor prepared by a green and simple method. Mater Lett 94:72–75. https://doi.org/10.1016/j.matlet.2012.12.020

    Article  CAS  Google Scholar 

  30. Rong M-C, Yang X-H, Huang L-Z et al (2019) Hydrogen peroxide-assisted ultrasonic synthesis of BCNO QDs for anthrax biomarker detection. ACS Appl Mater Interfaces 11:2336–2343. https://doi.org/10.1021/acsami.8b21786

    Article  CAS  PubMed  Google Scholar 

  31. Lei W-W, Portehault D, Dimova R et al (2011) Boron carbon nitride nano-structures from saltmelts: tunable water-soluble phosphors. J Am Chem Soc 133:7121–7127. https://doi.org/10.1021/ja200838c

    Article  CAS  PubMed  Google Scholar 

  32. Liu Q, Jiang P, Pu Z-H et al (2014) BCNO nanoparticles: a novel highly efficient fluorosensor for ultrarapid detection of Cu2+. Sens Actuators B Chem 194:492–497. https://doi.org/10.1016/j.snb.2013.12.121

    Article  CAS  Google Scholar 

  33. Zhang X, Yan S, Cheng Y et al (2013) Spectral properties of BCNO phosphor with wide range of excitation and emission. Mater Lett 102–103:102–105. https://doi.org/10.1016/j.matlet.2013.03.124

    Article  CAS  Google Scholar 

  34. Racicot J-M, Mako T-L, Olivelli A et al (2020) A paper-based device for ultrasensitive, colorimetric phosphate detection in seawater. Sensors 20:2766. https://doi.org/10.3390/s20102766

    Article  CAS  PubMed Central  Google Scholar 

  35. Talarico D, Cinti S, Arduini F et al (2015) Phosphate detection through a cost-effective carbon black nanoparticle-modified screen-printed electrode embedded in a continuous flow system. Environ Sci Technol 49:7934–7939. https://doi.org/10.1021/acs.est.5b00218

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (21707030 and 82073608).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu He or Manman Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 545 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Li, Z., He, Y. et al. Boron carbon oxynitride quantum dots-based ratio fluorescent nanoprobe assisted with smartphone for visualization detection of phosphate. Microchim Acta 189, 238 (2022). https://doi.org/10.1007/s00604-022-05331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05331-4

Keywords

Navigation