Skip to main content
Log in

Dendrimer-functionalized hydrothermal nanosized carbonaceous spheres as superior anion exchangers for ion chromatographic separation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Polyamidamine (PAMAM) dendrimer-functionalized hydrothermal nanosized carbonaceous spheres (HNCSs) were prepared and utilized as latexes for agglomerated anion exchange chromatography (AEC) stationary phase. The high-concentration and scalable production of monodisperse HNCSs (73–98 nm) was accomplished via the polyquaternium-7-assisted hydrothermal carbonization of fructose. The novel PAMAM-based quaternizations of HNCSs were designed by the amidation with PAMAM and epoxy-amine addition reaction with glycidol in aqueous solution. The mild functionalization condition leads to well-kept morphology of HNCSs, which forms one even latex layer on the sulfonated surface of polystyrene-divinylbenzene microbeads for the construction of AEC packing. Under isocratic elution, seven common inorganic anions and five organic acids were baseline separated in 9 min on prepared packing with efficiencies of 54,000–79,800 plates m−1 and asymmetry factor (As) of 1.02–1.12. The obtained separation efficiency, peak symmetry, and analysis time were superior to reported or typical commercial counterparts. The quick separation of polarizable anions in 7 min and carbohydrates in 5 min could also be carried out with symmetrical peaks (As: 1.00–1.18) and high efficiencies (49,700–62,100 N/m). Favorable stability and reproducibility were proved by continuous flushing and injection. The constructed packings were further applied to the determination of thiosulfate and sulfate in water reducer, galacturonic acid in Angelica polysaccharide hydrolysate, and fluoride samples in 4 min.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maya F, Estela JM, Cerda V (2011) Multisyringe ion chromatography with chemiluminescence detection for the determination of oxalate in beer and urine samples. Microchim Acta 173(2):33–41. https://doi.org/10.1007/s00604-010-0511-1

    Article  CAS  Google Scholar 

  2. Teixeira B, Mendes R (2022) Analysis of added phosphates in hake fillets by ion-exchange chromatography: a case study of false positives induced by nucleotides coelution. Food Chem 368:130841. https://doi.org/10.1016/j.foodchem.2021.130841

    Article  CAS  PubMed  Google Scholar 

  3. Misiura A, Shen H, Tauzin L, Dutta C, Bishop LDC, Carrejo NC, Zepeda OJ, Ramezani S, Moringo NA, Marciel AB, Rossky PJ, Landes CF (2021) Single-molecule dynamics reflect IgG conformational changes associated with ion-exchange chromatography. Anal Chem 93(32):11200–11207. https://doi.org/10.1021/acs.analchem.1c01799

    Article  CAS  PubMed  Google Scholar 

  4. Liu X, Wang Y, Cong H, Shen Y, Yu B (2021) A review of the design of packing materials for ion chromatography. J Chromatogr A 1651:462313. https://doi.org/10.1016/j.chroma.2021.462313

    Article  CAS  Google Scholar 

  5. Huang W, Seetasang S, Azizi M, Dasgupta PK (2016) Functionalized cycloolefin polymer capillaries for open tubular ion chromatography. Anal Chem 88(24):12013–12020. https://doi.org/10.1021/acs.analchem.6b03669

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Wang J, Ning X, Liu J, Xia H, Wan G, Bai Q (2021) pH-dependent selective separation of acidic and basic proteins using quaternary ammoniation functionalized cysteine-zwitterionic stationary phase with RPLC/IEC mixed-mode chromatography. Talanta 225:122084. https://doi.org/10.1021/acs.analchem.1c01799

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Zhang M, Zhang Q, Mao J, Sun Y, Zhang S, Zhu Y, Guo Y, Zhang Y (2021) Preparation and characterization of graphitic carbon-nitride nanosheets agglomerated poly (styrene-divinylbenzene) anion exchange stationary phase for ion chromatography. Microchem J 164:106023. https://doi.org/10.1021/acs.analchem.1c01799

    Article  CAS  Google Scholar 

  8. Zatirakha AV, Smolenkov AD, Shpigun OA (2016) Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: a review. Anal Chim Acta 904:33–50. https://doi.org/10.1016/j.aca.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  9. Pohl CA (2013) Recent developments in ion-exchange columns for ion chromatography. LC-GC Eur 31:16–22

    Google Scholar 

  10. Wahab MF, Pohl CA, Lucy CA (2011) Ion chromatography on carbon clad zirconia modified by diazonium chemistry and functionalized latex particles. Analyst 136:3113–3120. https://doi.org/10.1039/c1an15284j

    Article  CAS  PubMed  Google Scholar 

  11. Huang W (2020) Preparation and characterization of open tubular ion chromatographic columns. Chinese J Chromatogra 38(4):399–408. https://doi.org/10.3724/SP.J.1123.2019.08020

    Article  CAS  Google Scholar 

  12. Zakaria P, Hutchinson JP, Avdalovic N, Liu Y, Haddad PR (2005) Latex-coated polymeric monolithic ion-exchange stationary phases. 2. Micro-ion chromatography. Anal Chem 77(2):417–423. https://doi.org/10.1021/ac048747l

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Q, Miao X, Yu J, Zhu Y (2019) Covalent hyperbranched porous carbon nanospheres as a polymeric stationary phase for ion chromatography. Microchim Acta 186:139. https://doi.org/10.1007/s00604-019-3243-x

    Article  CAS  Google Scholar 

  14. Karahan HE, Ji M, Pinilla JL, Han X, Mohamed A, Wang L, Wang Y, Zhai S, Montoya A, Beyenal H (2020) Biomass-derived nanocarbon materials for biological applications: challenges and prospects. J Mater Chem B 8(42):9668–9678. https://doi.org/10.1039/d0tb01027h

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Xie L, Deng J, Gong Y, Tang G, Bai H, Wang Y (2019) Annular mesoporous carbonaceous nanospheres from biomass-derived building units with enhanced biological interactions. Chem Mater 31(18):7186–7191. https://doi.org/10.1021/acs.chemmater.9b01449

    Article  CAS  Google Scholar 

  16. Li W, Zhang Z, Kong B, Feng S, Wang J, Wang L, Yang J, Zhang F, Wu P, Zhao D (2013) Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew Chem Int Ed 52(31):8151–8155. https://doi.org/10.1002/anie.201303927

    Article  CAS  Google Scholar 

  17. Zhang S, Zhang L, Qian L, Yang L, Ao Z, Liu W (2019) Facile, sustainable, and chemical-additive-free synthesis of monodisperse carbon spheres assisted by external pressure. ACS Sustain Chem Eng 7:7486–7490. https://doi.org/10.1021/acssuschemeng.9b00036

    Article  CAS  Google Scholar 

  18. Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J 15:4195–4203. https://doi.org/10.1002/chem.200802097

    Article  CAS  PubMed  Google Scholar 

  19. Hu X, Wu Y, Deng C (2020) Recognition of urinary N-linked glycopeptides in kidney cancer patients by hydrophilic carbohydrate functionalized magnetic metal organic framework combined with LC-MS/MS. Microchim Acta 187(11):616. https://doi.org/10.1007/s00604-020-04595-y

    Article  CAS  Google Scholar 

  20. Ghamat SN, Talebpour Z, Mehdi A (2019) Click reactions: Recent trends in preparation of new sorbents and stationary phases for extraction and chromatographic applications. Trac-trend Anal Chem 118:556–573. https://doi.org/10.1016/j.trac.2019.06.029

    Article  CAS  Google Scholar 

  21. Abolghasemi MM, Habibiyan R, Jaymand M, Piryaei M (2018) A star-shaped polythiophene dendrimer coating for solid-phase microextraction of triazole agrochemicals. Microchim Acta 185(3):179. https://doi.org/10.1007/s00604-017-2639-8

    Article  CAS  Google Scholar 

  22. Tomalia DA (2005) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 30:294–324. https://doi.org/10.1016/j.progpolymsci.2005.01.007

    Article  CAS  Google Scholar 

  23. Zhi M, He Y, Guo D, Zhu Y (2020) Advances in polymer-based dendrimer-grafted chromatographic separation materials. Chinese J Chromatogr 38:366–371. https://doi.org/10.3724/SP.J.1123.2019.07022

    Article  CAS  Google Scholar 

  24. Rahman MU, Wang J, Xia H, Liu J, Bai Q (2020) High capacity temperature-responsive affinity chromatography designed for antibody separation. Chem Eng J 391:123561. https://doi.org/10.1016/j.cej.2019.123561

    Article  CAS  Google Scholar 

  25. Guo D, Lou C, Wang N, Chen M, Zhang P, Wu S, Zhu Y (2017) Poly (styrene-divinyl benzene-glycidylmethacrylate) stationary phase grafted with poly amidoamine (PAMAM) dendrimers for rapid determination of phenylene diamine isomers in HPLC. Talanta 168:188–195. https://doi.org/10.1016/j.talanta.2017.03.053

    Article  CAS  PubMed  Google Scholar 

  26. Zhou D, Zeng J, Fu Q, Gao D, Zhang K, Ren X, Zhou K, Xia Z, Wang L (2018) Preparation and evaluation of a reversed-phase/hydrophilic interaction/ion-exchange mixed-mode chromatographic stationary phase functionalized with dopamine-based dendrimers. J Chromatogr A 1571:165–175. https://doi.org/10.1016/j.chroma.2018.08.018

    Article  CAS  PubMed  Google Scholar 

  27. Yu SX, Sha XM, Zhou XQ, Guo DD, Han BW, Huang SH, Zhu Y (2022) Cyclodextrin-dendrimers nanocomposites functionalized high performance liquid chromatography stationary phase for efficient separation of aromatic compounds. J Chromatogr A 1662:462730. https://doi.org/10.1016/j.chroma.2021.462730

    Article  CAS  PubMed  Google Scholar 

  28. Huang Z, Zhu Z, Subhani Q, Yan W, Guo W, Zhu Y (2012) Simultaneous determination of iodide and iodate in povidone iodine solution by ion chromatography with homemade and exchange capacity controllable columns and column-switching technique. J Chromatogr A 1251:154. https://doi.org/10.1016/j.chroma.2012.06.059

    Article  CAS  PubMed  Google Scholar 

  29. Gong Y, Xie L, Li H, Wang Y (2014) Sustainable and scalable production of monodisperse and highly uniform colloidal carbonaceous spheres using sodium polyacrylate as the dispersant. Chem Commun 50:12633–12636. https://doi.org/10.1039/c4cc04998e

    Article  CAS  Google Scholar 

  30. Zhang H, Hu M, Lv Q, Yang L, Lv R (2019) Monodisperse nitrogen-doped carbon spheres with superior rate capacities for lithium/sodium ion storage. Electrochim Acta 297:365–371. https://doi.org/10.1016/j.electacta.2018.11.207

    Article  CAS  Google Scholar 

  31. Zhang M, Yang BC, Dasgupta PK (2013) Polymethylmethacrylate open tubular ion exchange columns: nondestructive measurement of very small ion exchange capacities. Anal Chem 85:7994–8000. https://doi.org/10.1021/ac4018583

    Article  CAS  PubMed  Google Scholar 

  32. Zhang K, Cao M, Lou C, Wu S, Zhang P, Zhi M, Zhu Y (2017) Graphene-coated polymeric anion exchangers for ion chromatography. Anal Chim Acta 970:73–81. https://doi.org/10.1016/j.aca.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  33. Yao P, Huang Z, Zhu Q, Zhu Z, Wang L, Zhu Y (2019) A novel composite stationary phase composed of polystyrene/divinybenzene beads and quaternized nanodiamond for anion exchange chromatography. Chinese Chem Lett 30:465–469. https://doi.org/10.1016/j.cclet.2018.03.029

    Article  CAS  Google Scholar 

  34. Shchukina OI, Zatirakha AV, Uzhel AS, Smolenkov AD, Shpigun OA (2017) Novel polymer-based anion-exchangers with covalently-bonded functional layers of quaternized polyethyleneimine for ion chromatography. Anal Chim Acta 964:187–194. https://doi.org/10.1016/j.aca.2017.01.062

    Article  CAS  PubMed  Google Scholar 

  35. Shchukina OI, Zatirakha AV, Smolenkov AD, Nesterenko PN, Shpigun OA (2015) Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography. J Chromatogr A 1408:78–86. https://doi.org/10.1016/j.chroma.2015.06.039

    Article  CAS  PubMed  Google Scholar 

  36. Huang Z, Wu H, Wang F, Yan W, Guo W, Zhu Y (2013) Polystyrene-divinylbenzene stationary phases agglomerated with quaternized multi-walled carbon nanotubes for anion exchange chromatography. J Chromatogr A 1294:152–156. https://doi.org/10.1016/j.chroma.2013.04.045

    Article  CAS  PubMed  Google Scholar 

  37. Sun Y, Wang C, Li Z, Yu W, Liu J, Zhu Y (2018) Preparation and characterization of a latex-agglomerated anion exchange chromatographic stationary phase. Chinese J Chromatogr 36:1206–1210. https://doi.org/10.3724/SP.J.1123.2018.09034

    Article  CAS  Google Scholar 

  38. Chen D, Shi F, Zhou Y, Xu W, Shen H, Zhu Y (2021) Hyperbranched anion exchangers prepared from polyethylene polyamine modified polymeric substrates for ion chromatography. J Chromatogr A 1655:462508. https://doi.org/10.1016/j.chroma.2021.462508

    Article  CAS  PubMed  Google Scholar 

  39. Zhang K, Lou C, Zhu Y, Zhi M, Zeng X, Shou D (2019) Covalently grafted anion exchangers with linear epoxy-amine functionalities for high-performance ion chromatography. Talanta 194:485–492. https://doi.org/10.1016/j.talanta.2018.10.062

    Article  CAS  PubMed  Google Scholar 

  40. Liang C, Lucy CA (2010) Characterization of ion chromatography columns based on hydrophobicity and hydroxide eluent strength. J Chromatogr A 1217:8154–8160. https://doi.org/10.1016/j.chroma.2010.10.065

    Article  CAS  PubMed  Google Scholar 

  41. Yandrasits MA, Marimannikkuppam S, Lindell MJ, Kalstabakken KA, Kurkowski M, Ha P (2022) Ion chromatography and combustion ion chromatography analysis of fuel cell effluent water during open circuit voltage. J Electrochem Soc 169:034526. https://doi.org/10.1149/1945-7111/ac5d96

    Article  Google Scholar 

Download references

Acknowledgements

We also highly appreciate Sha Liu for his help on the tea sample analysis and related discussion in this work.

Funding

Financial support is from the National Natural Science Foundation of China (82004208), Postdoctoral Science Foundation of China (2020M681948), Zhejiang Provincial Postdoctoral Science Foundation (ZJ2020104) and Research Project of Zhejiang Chinese Medical University (BZXCG-2020–11, 2020ZZ07, 2021JKZKTS030B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiming Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4062 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Lei, X., Zhu, Y. et al. Dendrimer-functionalized hydrothermal nanosized carbonaceous spheres as superior anion exchangers for ion chromatographic separation. Microchim Acta 189, 239 (2022). https://doi.org/10.1007/s00604-022-05324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05324-3

Keywords

Navigation