Skip to main content

Advertisement

Log in

Rapid qualitative and quantitative detection of Salmonella typhimurium using a single-step dual photometric/fluorometric assay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

A Publisher Correction to this article was published on 26 July 2022

This article has been updated

Abstract

A dual-signal photometric/fluorometric assay was established for rapid, qualitative, and quantitative detection of Salmonella typhimurium (S. typhimurium). This method was composed of two parts: (1) a single-step photometric (SSC) assay containing gold nanoparticles (AuNPs), poly-diallyldimethylammonium chloride (PDDA), and S. typhimurium-specific aptamer, and (2) a fluorescence (FL) assay containing carboxyl-modified CdSe/ZnS quantum dots (QDs-COOH). Users just need to drop samples contaminated with S. typhimurium into SSC assay; the apparent color change from red to blue can be observed in a short time (20 min). A smartphone app was developed to read the semiquantitative result. By subsequently adding one drop of FL assay into the reaction mixture, the generated fluorescence intensity reflected the concentration of S. typhimurium. The naked eye limit of detection (LOD) and fluorescent LOD were 103 cfu/mL and 10 cfu/mL, respectively. This method exhibited good selectivity. The reliability and practicability were verified by testing contaminated food, drinking water, and pets’ urine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Wotzka SY, Nguyen BD, Hardt WD (2017) Salmonella typhimurium diarrhea reveals basic principles of enteropathogen infection and disease-promoted DNA exchange. Cell Host Microbe 21:443–454. https://doi.org/10.1016/j.chom.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  2. Fang S, Song D, Zhuo Y, Chen Y, Zhu A, Long F (2021) Simultaneous and sensitive determination of escherichia coli o157:H7 and salmonella typhimurium using evanescent wave dual-color fluorescence aptasensor based on micro/nano size effect. Biosens Bioelectron 185:113288. https://doi.org/10.1016/j.bios.2021.113288

    Article  CAS  PubMed  Google Scholar 

  3. Still WL, Tapia MD, Tennant SM, Sylla M, Touré A, Badji H, Keita AM, Sow SO, Levine MM, Kotloff KL (2020) Surveillance for invasive salmonella disease in bamako, mali, from 2002 to 2018. Clin Infect Dis 71:S130–S140. https://doi.org/10.1093/cid/ciaa482

    Article  PubMed  PubMed Central  Google Scholar 

  4. Herrero-Fresno A, Olsen JE (2018) Salmonella typhimurium metabolism affects virulence in the host - a mini-review. Food Microbiol 71:98–110. https://doi.org/10.1016/j.fm.2017.04.016

    Article  CAS  PubMed  Google Scholar 

  5. Anderson TC, Marsden-Haug N, Morris JF, Culpepper W, Bessette N, Adams JK, Bidol S, Meyer S, Schmitz J, Erdman MM, Gomez TM, Barton Behravesh C (2017) Multistate outbreak of human salmonella typhimurium infections linked to pet hedgehogs - United States, 2011–2013. Zoonoses Public Health 64:290–298. https://doi.org/10.1111/zph.12310

    Article  CAS  PubMed  Google Scholar 

  6. Ding T, Suo Y, Zhang Z et al (2017) A multiplex RT-PCR assay for S. aureus, L. monocytogenes, and Salmonella spp. detection in raw milk with pre-enrichment. Front Microbiol 8:989. https://doi.org/10.3389/fmicb.2017.00989

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oh SJ, Park BH, Jung JH et al (2016) Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens Bioelectron 75:293–300. https://doi.org/10.1016/j.bios.2015.08.052

    Article  CAS  PubMed  Google Scholar 

  8. Lv X, Huang Y, Liu D et al (2019) Multicolor and ultrasensitive enzyme-linked immunosorbent assay based on the fluorescence hybrid chain reaction for simultaneous detection of pathogens. J Agric Food Chem 67:9390–9398. https://doi.org/10.1021/acs.jafc.9b03414

    Article  CAS  PubMed  Google Scholar 

  9. Zheng L, Cai G, Qi W, Wang S, Wang M, Lin J (2020) Optical biosensor for rapid detection of salmonella typhimurium based on porous gold@platinum nanocatalysts and a 3d fluidic chip. ACS Sens 5:65–72. https://doi.org/10.1021/acssensors.9b01472

    Article  CAS  PubMed  Google Scholar 

  10. Hua Z, Yu T, Liu D, Xianyu Y (2021) Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens Bioelectron 179:113076. https://doi.org/10.1016/j.bios.2021.113076

    Article  CAS  PubMed  Google Scholar 

  11. Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115:10575–10636. https://doi.org/10.1021/acs.chemrev.5b00100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jans H, Huo Q (2012) Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41:2849–2866. https://doi.org/10.1039/c1cs15280g

    Article  CAS  PubMed  Google Scholar 

  13. Pehlivan ZS, Torabfam M, Kurt H, Ow-Yang C, Hildebrandt N, Yüce M (2019) Aptamer and nanomaterial based fret biosensors: a review on recent advances (2014–2019). Mikrochim Acta 186:563. https://doi.org/10.1007/s00604-019-3659-3

    Article  CAS  PubMed  Google Scholar 

  14. Sajwan RK, Lakshmi G, Solanki PR (2021) Fluorescence tuning behavior of carbon quantum dots with gold nanoparticles via novel intercalation effect of aldicarb. Food Chem 340:127835. https://doi.org/10.1016/j.foodchem.2020.127835

    Article  CAS  PubMed  Google Scholar 

  15. Wang S, Su L, Wang L, Zhang D, Shen G, Ma Y (2020) Colorimetric determination of carbendazim based on the specific recognition of aptamer and the poly-diallyldimethylammonium chloride aggregation of gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 228:117809. https://doi.org/10.1016/j.saa.2019.117809

    Article  CAS  PubMed  Google Scholar 

  16. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889. https://doi.org/10.1021/ja806804u

    Article  CAS  PubMed  Google Scholar 

  17. Wang M, Wang S, Li L, Wang G, Su X (2020) Β-cyclodextrin modified silver nanoclusters for highly sensitive fluorescence sensing and bioimaging of intracellular alkaline phosphatase. Talanta 207:120315. https://doi.org/10.1016/j.talanta.2019.120315

    Article  CAS  PubMed  Google Scholar 

  18. Yao S, Zhao C, Shang M, Li J, Wang J (2021) Enzyme-free and label-free detection of staphylococcus aureus based on target-inhibited fluorescence signal recovery. Food Chem Toxicol 150:112071. https://doi.org/10.1016/j.fct.2021.112071

    Article  CAS  PubMed  Google Scholar 

  19. Joshi R, Janagama H, Dwivedi HP, Senthil Kumar TM, Jaykus LA, Schefers J, Sreevatsan S (2009) Selection, characterization, and application of DNA aptamers for the capture and detection of salmonella enterica serovars. Mol Cell Probes 23:20–28. https://doi.org/10.1016/j.mcp.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Shao D, Shi Z, Wei J, Ma Z (2011) A brief review of foodborne zoo-noses in China. Epidemiol Infect 139:1497–1504. https://doi.org/10.1017/S0950268811000872

    Article  CAS  PubMed  Google Scholar 

  21. Pang B, Yao S, Xu K et al (2019) A novel visual-mixed-dye for LAMP and its application in the detection of foodborne pathogens. Anal Biochem 574:1–6. https://doi.org/10.1016/j.ab.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  22. Pang B, Ding X, Wang G, Zhao C, Xu Y, Fu K, Sun J, Song X, Wu W, Liu Y, Song Q, Hu J, Li J, Mu Y (2017) Rapid and quantitative detection of vibrio parahemolyticus by the mixed-dye-based loop-mediated isothermal amplification assay on a self-priming compartmentalization microfluidic chip. J Agric Food Chem 65:11312–11319. https://doi.org/10.1021/acs.jafc.7b03655

    Article  CAS  PubMed  Google Scholar 

  23. Sang F, Liu J, Zhang X, Pan J (2018) An aptamer-based colorimetric pt(ii) assay based on the use of gold nanoparticles and a cationic polymer. Mikrochim Acta 185:267. https://doi.org/10.1007/s00604-018-2794-6

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Wu Y, Zhou P, Yang W, Tao H, Qiu S, Feng C (2018) A novel fluorescent aptasensor for ultrasensitive and selective detection of acetamiprid pesticide based on the inner filter effect between gold nanoparticles and carbon dots. Analyst 143:5151–5160. https://doi.org/10.1039/c8an01166d

    Article  CAS  PubMed  Google Scholar 

  25. Liu H, Li M, Jiang L, Shen F, Hu Y, Ren X (2017) Sensitive arginine sensing based on inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. Spectrochim Acta A Mol Biomol Spectrosc 173(105):113. https://doi.org/10.1016/j.saa.2016.08.057

    Article  CAS  Google Scholar 

  26. Yan X, Li H, Han X, Su X (2015) A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens Bioelectron 74:277–283. https://doi.org/10.1016/j.bios.2015.06.020

    Article  CAS  PubMed  Google Scholar 

  27. Zhang D, Yang J, Ye J, Xu L, Xu H, Zhan S, Xia B, Wang L (2016) Colorimetric detection of bisphenol a based on unmodified aptamer and cationic polymer aggregated gold nanoparticles. Anal Biochem 499:51–56. https://doi.org/10.1016/j.ab.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  28. Du S, Lu Z, Gao L et al (2020) Salmonella typhimurium detector based on the intrinsic peroxidase-like activity and photothermal effect of MoS2. Mikrochim Acta 187:627. https://doi.org/10.1007/s00604-020-04600-4

    Article  CAS  PubMed  Google Scholar 

  29. Sun L, Zhao Q (2018) Competitive horseradish peroxidase-linked aptamer assay for sensitive detection of Aflatoxin B1. Talanta 179:344–349. https://doi.org/10.1016/j.talanta.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  30. Freeman R, Girsh J, Willner I (2013) Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing. ACS Appl Mater Interfaces 5:2815–2834. https://doi.org/10.1021/am303189h

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (Grant No. 81872668, 82003505).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, investigation, formal analysis, and writing – original draft: Yanli Fu, Jia Wei, and Bo Pang. Methodology: Shuo Yao and Xiangyang Zhuang. Software: Liang Zhang. Resources, funding acquisition, and project administration: Mingrui Zhang and Juan Li. Supervision, validation, writing – review and editing: Bo Pang, Chao Zhao, and Juan Li.

Corresponding authors

Correspondence to Chao Zhao, Juan Li or Bo Pang.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article, the article note should be updated to "Yanli Fu and Jia Wei contributed equally to this work”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7.38 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Wei, J., Yao, S. et al. Rapid qualitative and quantitative detection of Salmonella typhimurium using a single-step dual photometric/fluorometric assay. Microchim Acta 189, 218 (2022). https://doi.org/10.1007/s00604-022-05312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05312-7

Keywords

Navigation