Skip to main content
Log in

Colloidal synthesis of perovskite-type lanthanum aluminate incorporated graphene oxide composites: Electrochemical detection of nitrite in meat extract and drinking water

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemical method has been developed for determination of nitrite using La-based perovskite-type lanthanum aluminate nanorod-incorporated graphene oxide nanosheets (LaAlO3@GO). Morphological and structural analyses of the prepared perovskite-type electrocatalyst, with and without a glassy carbon electrode (GCE) surface, were performed using various techniques, including transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry, Raman spectroscopy, and electrochemical impedance spectroscopy. Under optimal conditions, the LaAlO3@GO composite-modified GCE (LaAlO3@GO/GCE) exhibited excellent electrocatalytic performance toward the electrooxidation of nitrite (pH = 7.0), with a significant increase in anodic peak currents compared with the bare GCE. Using amperometry, the fabricated sensor exhibited a wide nitrite determination range from 0.01 to 1540.5 µM, with a detection limit of 0.0041 µM. Notably, the proposed LaAlO3@GO/GCE electrode demonstrated a good nitrite detection performance in different meat and water samples. In addition, the LaAlO3@GO/GCE electrode displayed excellent selectivity, repeatability, reproducibility, storage, and operational stability toward nitrite detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Turdean GL, Szabo G (2015) Nitrite detection in meat products samples by square-wave voltammetry at a new single walled carbon naonotubes–myoglobin modified electrode. Food Chem 179:325–330

    Article  CAS  Google Scholar 

  2. Öztekin N, Nutku MS, Erim FB (2002) Simultaneous determination of nitrite and nitrate in meat products and vegetables by capillary electrophoresis. Food Chem 76:103–106

    Article  Google Scholar 

  3. Unnikrishnan B, Ru P-L, Chen S-M, Mani V (2013) Nitrite determination at electrochemically synthesized polydiphenylamine-Pt composite modified glassy carbon electrode. Sens Actuators, B Chem 177:887–892

    Article  CAS  Google Scholar 

  4. Mani V, Govindasamy M, Chen S-M, Chen T-W, Kumar AS, Huang S-T (2017) Core-shell heterostructured multiwalled carbon nanotubes@ reduced graphene oxide nanoribbons/chitosan, a robust nanobiocomposite for enzymatic biosensing of hydrogen peroxide and nitrite. Sci Rep 7:1–10

    Article  Google Scholar 

  5. Muthumariappan A, Govindasamy M, Chen S-M, Sakthivel K, Mani V (2017) Screen-printed electrode modified with a composite prepared from graphene oxide nanosheets and Mn3O4 microcubes for ultrasensitive determination of nitrite. Microchim Acta 184:3625–3634

    Article  CAS  Google Scholar 

  6. E.A. Luy, S.C. Morgan, J.J. Creelman, B.J. Murphy, V.J. Sieben, Inlaid microfluidic optics: absorbance cells in clear devices applied to nitrite and phosphate detection, Journal of Micromechanics and Microengineering, 30 (2020) 095001.

  7. C.-Y. Hou, L.-M. Fu, W.-J. Ju, P.-Y. Wu, Microfluidic colorimetric system for nitrite detection in foods, Chemical Engineering Journal, 398 (2020) 125573.

  8. Wang Y, Wang Y, Huang C, Chen T, Wu J (2020) Ultra-weak chemiluminescence enhanced by cerium-doped LaF3 nanoparticles: a potential nitrite analysis method. Front Chem 8:639

    Article  CAS  Google Scholar 

  9. Wu H, Tong C (2020) Dual-emission fluorescent probe for the simultaneous detection of nitrite and mercury (II) in environmental water samples based on the tb3+-modified carbon quantum dot/3-aminophenylboronic acid hybrid. Anal Chem 92:8859–8866

    Article  CAS  Google Scholar 

  10. Büldt A, Karst U (1999) Determination of nitrite in waters by microplate fluorescence spectroscopy and HPLC with fluorescence detection. Anal Chem 71:3003–3007

    Article  Google Scholar 

  11. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  Google Scholar 

  12. Jia J, Lu W, Li L, Gao Y, Jiao Y, Han H, Dong C, Shuang S (2020) Orange-emitting N-doped carbon dots as fluorescent and colorimetric dual-mode probes for nitrite detection and cellular imaging. Journal of Materials Chemistry B 8:2123–2127

    Article  CAS  Google Scholar 

  13. Mako TL, Levenson AM, Levine M (2020) Ultrasensitive detection of nitrite through implementation of N-(1-Naphthyl) ethylenediamine-grafted cellulose into a paper-based device. ACS sensors 5:1207–1215

    Article  CAS  Google Scholar 

  14. S. Sahoo, P. Sahoo, A. Sharma, A. Satpati, Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite, Sensors and Actuators B: Chemical, 309 (2020) 127763.

  15. P. Arul, S.-T. Huang, V. Mani, Y.-C. Hu, Ultrasonic synthesis of bismuth-organic framework intercalated carbon nanofibers: a dual electrocatalyst for trace-level monitoring of nitro hazards, Electrochimica Acta, 381 (2021) 138280.

  16. Akilarasan M, Kogularasu S, Chen SM, Govindasamy M, Chen TW, Ali MA, Al-Hemaid FM, Elshikh M, Farah MA (2018) A green approach to the synthesis of well-structured prussian blue cubes for the effective electrocatalytic reduction of antiprotozoal agent coccidiostat nicarbazin. Electroanalysis 30:1669–1677

    Article  Google Scholar 

  17. Doh H, Kim HY, Kim GS, Cha J, Park HS, Ham HC, Yoon SP, Han J, Nam SW, Song KH (2017) Influence of cation substitutions based on ABO3 perovskite materials, Sr1–x Y x Ti1–y Ru y O3− δ, on ammonia dehydrogenation. ACS Sustainable Chemistry & Engineering 5:9370–9379

    Article  CAS  Google Scholar 

  18. Rajaji U, Ganesh P-S, Chen S-M, Govindasamy M, Kim S-Y, Alshgari RA, Shimoga G (2021) Deep eutectic solvents synthesis of perovskite type cerium aluminate embedded carbon nitride catalyst: high-sensitive amperometric platform for sensing of glucose in biological fluids. J Ind Eng Chem 102:312–320

    Article  CAS  Google Scholar 

  19. Poplawski K, Lichtenberger J, Keil FJ, Schnitzlein K, Amiridis MD (2000) Catalytic oxidation of 1, 2-dichlorobenzene over ABO3-type perovskites. Catal Today 62:329–336

    Article  CAS  Google Scholar 

  20. Xu Y, Suo HL, Grivel J-C, Liu M, Zhang X, Zhou Y, Liu J, Zhang Z (2020) Synergistic effects on the nanostrain in YBCO films double-doped with positive mismatch perovskite (Ba2YNbO6) and negative mismatch perovskite (LaAlO3). Cryst Growth Des 20:3449–3455

    Article  CAS  Google Scholar 

  21. Y. Li, X. Wei, J. Yu, Inevitable high density of oxygen vacancies at the surface of polar–nonpolar perovskite heterostructures LaAlO3/SrTiO3, Journal of Applied Physics, 127 (2020) 205302.

  22. Sim Y, Yoo J, Ha J-M, Jung JC (2019) Oxidative coupling of methane over LaAlO3 perovskite catalysts prepared by a co-precipitation method: effect of co-precipitation pH value, Journal of Energy. Chemistry 35:1–8

    Google Scholar 

  23. Mani V, Devadas B, Chen S-M (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309–315

    Article  CAS  Google Scholar 

  24. Govindasamy M, Umamaheswari R, Chen S-M, Mani V, Su C (2017) Graphene oxide nanoribbons film modified screen-printed carbon electrode for real-time detection of methyl parathion in food samples. J Electrochem Soc 164:B403

    Article  CAS  Google Scholar 

  25. Rajaji U, Murugan K, Chen S-M, Govindasamy M, Chen T-W, Lin PH (2019) Graphene oxide encapsulated 3D porous chalcopyrite (CuFeS2) nanocomposite as an emerging electrocatalyst for agro-hazardous (methyl paraoxon) detection in vegetables. Compos B Eng 160:268–276

    Article  CAS  Google Scholar 

  26. U. Rajaji S, Chinnapaiyan S-M, Chen M, Govindasamy J.I.d, Oliveira Filho W, Khushaim V, Mani, Design and fabrication of yttrium ferrite garnet-embedded graphitic carbon nitride: a sensitive electrocatalyst for smartphone-enabled point-of-care pesticide (mesotrione) analysis in food samples, ACS Applied Materials & Interfaces, 13 (2021) 24865–24876.

  27. Rajaji U, Nair JA, Chen S-M, Sandhya K, Alshgari RA, Jiang T-Y (2021) A disposable electrode modified with metal orthovanadate and sulfur-reduced graphene oxide for electrochemical detection of anti-rheumatic drug. New J Chem 45:19858–19867

    Article  CAS  Google Scholar 

  28. Kogularasu S, Govindasamy M, Chen S-M, Akilarasan M, Mani V (2017) 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sens Actuators, B Chem 253:773–783

    Article  CAS  Google Scholar 

  29. Dhahri A, Horchani-Naifer K, Benedetti A, Enrichi F, Ferid M (2014) Combustion synthesis and photoluminescence properties of LaAlO3 nanophosphors doped with Yb3+ ions. J Lumin 153:408–411

    Article  CAS  Google Scholar 

  30. Dhahri A, Horchani-Naifer K, Benedetti A, Enrichi F, Ferid M (2013) Combustion synthesis and spectroscopic charaterisation of LaAlO3 nanophosphors doped Er3+ ions. Ceram Int 39:9613–9617

    Article  CAS  Google Scholar 

  31. Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520

    Article  CAS  Google Scholar 

  32. Dereń P, Lemański K, Gągor A, Watras A, Małecka M, Zawadzki M (2010) Symmetry of LaAlO3 nanocrystals as a function of crystallite size. J Solid State Chem 183:2095–2100

    Article  Google Scholar 

  33. S. Vinoth, M. Govindasamy, S.-F. Wang, S. Anandaraj, Layered nanocomposite of zinc sulfide covered reduced graphene oxide and their implications for electrocatalytic applications, Ultrasonics sonochemistry, 64 (2020) 105036.

  34. S. Chinnapaiyan, U. Rajaji, S.-M. Chen, T.-Y. Liu, J.I. de Oliveira Filho, Y.-S. Chang, Fabrication of thulium metal–organic frameworks based smartphone sensor towards arsenical feed additive drug detection: applicable in food safety analysis, Electrochimica Acta, 401 (2021) 139487.

  35. M. Annalakshmi, S. Kumaravel, S.-M. Chen, P. Balasubramanian, T. Balamurugan, A straightforward ultrasonic-assisted synthesis of zinc sulfide for supersensitive detection of carcinogenic nitrite ions in water samples, Sensors and Actuators B: Chemical, 305 (2020) 127387.

  36. Wang P, Zhou F, Wang Z, Lai C, Han X (2015) Substrate-induced assembly of PtAu alloy nanostructures at choline functionalized monolayer interface for nitrite sensing. J Electroanal Chem 750:36–42

    Article  CAS  Google Scholar 

  37. Wang G, Han R, Feng X, Li Y, Lin J, Luo X (2017) A glassy carbon electrode modified with poly (3, 4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchim Acta 184:1721–1727

    Article  CAS  Google Scholar 

  38. Balasubramanian P, Velmurugan M, Chen S-M, Chen T-W, Ye Y-T (2019) A single-step electrochemical preparation of cadmium sulfide anchored erGO/β-CD modified screen-printed carbon electrode for sensitive and selective detection of nitrite. J Electrochem Soc 166:B690

    Article  CAS  Google Scholar 

  39. Yang J-H, Yang H, Liu S, Mao L (2015) Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite. Sens Actuators, B Chem 220:652–658

    Article  CAS  Google Scholar 

  40. Wan Y, Zheng YF, Wan HT, Yin HY, Song XC (2017) A novel electrochemical sensor based on Ag nanoparticles decorated multi-walled carbon nanotubes for applied determination of nitrite. Food Control 73:1507–1513

    Article  CAS  Google Scholar 

  41. Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B 148:22–28

    Article  Google Scholar 

  42. Lin A-J, Wen Y, Zhang L-J, Lu B, Li Y, Jiao Y-Z, Yang H-F (2011) Layer-by-layer construction of multi-walled carbon nanotubes, zinc oxide, and gold nanoparticles integrated composite electrode for nitrite detection. Electrochim Acta 56:1030–1036

    Article  CAS  Google Scholar 

  43. Zhao Z, Zhang J, Wang W, Sun Y, Li P, Hu J, Chen L, Gong W (2019) Synthesis and electrochemical properties of Co3O4-rGO/CNTs composites towards highly sensitive nitrite detection. Appl Surf Sci 485:274–282

    Article  CAS  Google Scholar 

  44. Mani V, Periasamy AP, Chen S-M (2012) Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochem Commun 17:75–78

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Researchers Supporting Project Number (RSP-2021/265) King Saud University, Riyadh, Saudi Arabia, the Ministry of Science and Technology (grant number 110–2221-E-131–011-MY3), and Ming Chi University of Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sea-Fue Wang, Chi-Hsien Huang or Razan A. Alshgari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1537 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindasamy, M., Wang, SF., Huang, CH. et al. Colloidal synthesis of perovskite-type lanthanum aluminate incorporated graphene oxide composites: Electrochemical detection of nitrite in meat extract and drinking water. Microchim Acta 189, 210 (2022). https://doi.org/10.1007/s00604-022-05296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05296-4

Keywords

Navigation