Skip to main content

Advertisement

Log in

Heparin-enhanced peroxidase-like activity of iron-cobalt oxide nanosheets for sensitive colorimetric detection of trypsin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Iron-cobalt oxide nanosheets (FeCo-ONSs) were proved to have intrinsic peroxidase-like activity. Additionally, the peroxidase-like activity of FeCo-ONSs toward the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) was dramatically enhanced after heparin addition due to the stronger affinity toward TMB. Protamine combines with heparin, so the promotion of peroxidase-like activity of FeCo-ONSs with heparin was suppressed. With the addition of trypsin, protamine was hydrolyzed and the enhancement effect of catalytic activity of FeCo-ONSs was recovered. Based on above process, a sensitive colorimetric platform for trypsin activity determination was constructed through measuring the absorbance of produced oxTMB at 652 nm, providing a linear detection range of 5 to 500 ng/mL and a low detection limit of 2.8 ng/mL. The method was applied to trypsin determination in real samples (human urine sample and multienzyme tablet sample) with satisfactory results, illustrating the potential application of this biosensor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ou L-J, Li X-Y, Li L-J, Liu H-W, Sun A-M, Liu K-J (2015) A sensitive assay for trypsin using poly(thymine)-templated copper nanoparticles as fluorescent probes. Analyst 140:1871–1875. https://doi.org/10.1039/c4an01994f

    Article  CAS  PubMed  Google Scholar 

  2. Kim KK, Turner R, Khazan N, Kodza A, Jones A, Singh RK, Moore RG (2020) Role of trypsin and protease-activated receptor-2 in ovarian cancer. PLoS ONE 15:e0232253. https://doi.org/10.1371/journal.pone.0232253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yan J, Xie C, Zhu J, Song Z, Wang Z, Li L (2021) Effect of trypsin concentration on living SMCC-7721 cells studied by atomic force microscopy. J Microsc. https://doi.org/10.1111/jmi.13053

    Article  PubMed  Google Scholar 

  4. Shi Y, Jiang Y, Sui D, Li Y, Chen T, Ma L, Ding Z (1996) Affinity chromatography of trypsin using chitosan as ligand support. J Chromatogr A 742:107–112

    Article  CAS  Google Scholar 

  5. Braatz JA, Elias C, Finny JG, Tran H, McCaman M (2015) Quantitation of residual trypsin in cell-based therapeutics using immobilized α-1-antitrypsin or SBTI in an ELISA format. J Immunol Methods 417:131–133. https://doi.org/10.1016/j.jim.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  6. Zhou Z, Liu W, Wang Y, Ding F, Liu X, Zhao Q, Zou P, Wang X, Rao H (2019) A fluorometric and colorimetric method for determination of trypsin by exploiting the gold nanocluster-induced aggregation of hemoglobin-coated gold nanoparticles. Mikrochim Acta 186:272. https://doi.org/10.1007/s00604-019-3380-2

    Article  CAS  PubMed  Google Scholar 

  7. Poon C-Y, Li Q, Zhang J, Li Z, Dong C, Lee AW-M, Chan W-H, Li H-W (2016) FRET-based modified graphene quantum dots for direct trypsin quantification in urine. Anal Chim Acta 917(64–70):10

    Google Scholar 

  8. Liu H, Yin H, Dong Y, Ding H, Chu X (2020) Electrochemiluminescence resonance energy transfer between luminol and black phosphorus nanosheets for the detection of trypsin via the “off-on-off” switch mode. Analyst 145:2204–2211. https://doi.org/10.1039/d0an00156b1016/j.aca.2016.02.032

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, Yu D, Zhao Y, Fan A (2014) Turn-on chemiluminescent sensing platform for label-free protease detection using streptavidin-modified magnetic beads. Biosens Bioelectron 61:45–50. https://doi.org/10.1016/j.bios.2014.04.050

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Yao L, Yu X, Zhao Y, Fan A (2015) Graphene oxide-based chemiluminescent sensing platform for label-free detection of trypsin and its inhibitors. Anal Methods 7:9949–9956. https://doi.org/10.1039/C5AY02038G

    Article  CAS  Google Scholar 

  11. Chen L, Fu X, Li J (2013) Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases. Nanoscale 5:5905–5911. https://doi.org/10.1039/c3nr00637a

    Article  CAS  PubMed  Google Scholar 

  12. He Y, Li N, Liu X, Chen W, Zhu X, Liu Q (2021) 5,10,15,20-tetrakis (4-carboxyl phenyl) porphyrin-functionalized urchin-like CuCo2O4 as an excellent artificial nanozyme for determination of dopamine. Mikrochim Acta 188:171. https://doi.org/10.1007/s00604-021-04819-9

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Shi Q, Zha Z, Zhu D, Zheng L, Shi L, Wei X, Lian L, Wu K, Cheng L (2021) Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioactive materials 6:4389–4401. https://doi.org/10.1016/j.bioactmat.2021.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu C-Y, Hsu Y-H, Chen Y, Yang L-C, Tseng S-C, Chen W-R, Huang C-C, Wan D (2021) Robust O2 supplementation from a trimetallic nanozyme-based self-sufficient complementary system synergistically enhances the starvation/photothermal therapy against hypoxic tumors. ACS Appl Mater Interfaces 13:38090–38104. https://doi.org/10.1021/acsami.1c10656

    Article  CAS  PubMed  Google Scholar 

  15. Koyappayil A, Kim HT, Lee M-H (2021) ‘Laccase-like’ properties of coral-like silver citrate micro-structures for the degradation and determination of phenolic pollutants and adrenaline. J Hazard Mater 412:125211. https://doi.org/10.1016/j.jhazmat.2021.125211

    Article  CAS  PubMed  Google Scholar 

  16. Huang H, Li M, Hao M, Yu LL, Li Y (2021) A novel selective detection method for sulfide in food systems based on the GMP-Cu nanozyme with laccase activity. Talanta 235:122775. https://doi.org/10.1016/j.talanta.2021.122775

    Article  CAS  PubMed  Google Scholar 

  17. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  18. Li P, Wu C, Xu Y, Cheng D, Lu Q, Gao J, Yang W, Zhu X, Liu M, Li H, Yin P, Zhang Y (2020) Group IV nanodots: newly emerging properties and application in biomarkers sensing. TrAC, Trends Anal Chem 131:116007. https://doi.org/10.1016/j.trac.2020.116007

    Article  CAS  Google Scholar 

  19. Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697. https://doi.org/10.1039/c1cc11943e

    Article  CAS  Google Scholar 

  20. Guo J, Wu S, Wang Y, Zhao M (2020) A label-free fluorescence biosensor based on a bifunctional MIL-101(Fe) nanozyme for sensitive detection of choline and acetylcholine at nanomolar level. Sens Actuat B Chem 312:128021. https://doi.org/10.1016/j.snb.2020.128021

    Article  CAS  Google Scholar 

  21. Xie J, Cheng D, Li P, Xu Z, Zhu X, Zhang Y, Li H, Liu X, Liu M, Yao S (2021) Au/metal–organic framework nanocapsules for electrochemical determination of glutathione. ACS Appl Nano Mater 4:4853–4862. https://doi.org/10.1021/acsanm.1c00394

    Article  CAS  Google Scholar 

  22. Yang L, Liu X, Lu Q, Huang N, Liu M, Zhang Y, Yao S (2016) Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant. Anal Chim Acta 930:23–30. https://doi.org/10.1016/j.aca.2016.04.041

    Article  CAS  PubMed  Google Scholar 

  23. Chen C, Zhao D, Jiang Y, Ni P, Zhang C, Wang B, Yang F, Lu Y, Sun J (2019) Logically regulating peroxidase-like activity of gold nanoclusters for sensing phosphate-containing metabolites and alkaline phosphatase activity. Anal Chem 91(23):15017–15024. https://doi.org/10.1021/acs.analchem.9b03629

    Article  CAS  PubMed  Google Scholar 

  24. Du Z, Wei C (2020) Using G-Rich sequence to enhance the peroxidase-mimicking activity of DNA-Cu/Ag nanoclusters for rapid colorimetric detection of hydrogen peroxide and glucose. Chem Select 5(17):5166–5171. https://doi.org/10.1002/slct.202000956

    Article  CAS  Google Scholar 

  25. Liang X, Han L (2020) White peroxidase-mimicking nanozymes: colorimetric pesticide assay without interferences of O 2 and color. Adv Funct Mater 30(28):2001933. https://doi.org/10.1002/adfm.202001933

    Article  CAS  Google Scholar 

  26. Zhu Y, Zhang Z, Song X, Bu Y (2021) A facile strategy for synthesis of porous Cu2O nanospheres and application as nanozymes in colorimetric biosensing. J Mater Chem B 9(16):3533–3543. https://doi.org/10.1039/d0tb03005h

    Article  CAS  PubMed  Google Scholar 

  27. Xu Y, Li P, Hu X, Chen H, Tang Y, Zhu Y, Zhu X, Zhang Y, Liu M, Yao S (2021) Polyoxometalate nanostructures decorated with CuO nanoparticles for sensing ascorbic acid and Fe 2+ ions. ACS Appl Nano Mater 4:8302–8313. https://doi.org/10.1021/acsanm.1c01495

    Article  CAS  Google Scholar 

  28. Swaidan A, Borthakur P, Boruah PK, Das MR, Barras A, Hamieh S, Toufaily J, Hamieh T, Szunerits S, Boukherroub R (2019) A facile preparation of CuS-BSA nanocomposite as enzyme mimics: application for selective and sensitive sensing of Cr(VI) ions. Sens Actuat B Chem 294:253–262. https://doi.org/10.1016/j.snb.2019.05.052

    Article  CAS  Google Scholar 

  29. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210. https://doi.org/10.1002/adma.200903783

    Article  CAS  PubMed  Google Scholar 

  30. Wang T, Bai Q, Zhu Z, Xiao H, Jiang F, Du F, Yu WW, Liu M, Sui N (2021) Graphdiyne-supported palladium-iron nanosheets: a dual-functional peroxidase mimetic nanozyme for glutathione detection and antibacterial application. Chem Eng J 413:127537. https://doi.org/10.1016/j.cej.2020.127537

    Article  CAS  Google Scholar 

  31. Wu J, Yang Q, Li Q, Li H, Li F (2021) Two-dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticides without the interference of H2O2 and color. Anal Chem 93(8):4084–4091. https://doi.org/10.1021/acs.analchem.0c05257

    Article  CAS  PubMed  Google Scholar 

  32. Wei X, Chen J, Ali MC, Munyemana JC, Qiu H (2020) Cadmium cobaltite nanosheets synthesized in basic deep eutectic solvents with oxidase-like, peroxidase-like, and catalase-like activities and application in the colorimetric assay of glucose. Mikrochim Acta 187(6):314. https://doi.org/10.1007/s00604-020-04298-4

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Q, Shen T, Liu Y, Hu X, Zhao W, Ma Z, Li P, Zhu X, Zhang Y, Liu M, Yao S (2021) Universal nanoplatform for formaldehyde detection based on the oxidase-mimicking activity of MnO2 nanosheets and the in situ catalysis-produced fluorescence species. J Agric Food Chem 69:7303–7312. https://doi.org/10.1021/acs.jafc.1c01174

    Article  CAS  PubMed  Google Scholar 

  34. Hong C, Chen L, Wu C, Yang D, Dai J-Y, Huang Z, Cai R, Tan W (2022) Green synthesis of Au@WSe2 hybrid nanostructures with the enhanced peroxidase-like activity for sensitive colorimetric detection of glucose. Nano Res 15:1587–1592. https://doi.org/10.1007/s12274-021-3706-3

    Article  CAS  Google Scholar 

  35. Ma D, Yu J, Yin W, Zhang X, Mei L, Zu Y, An L, Gu Z (2018) Synthesis of surface-modification-oriented nanosized molybdenum disulfide with high peroxidase-like catalytic activity for H2O2 and cholesterol detection. Chem-Eur J 24(59):15868–15878

    Article  CAS  Google Scholar 

  36. Zhuang L, Ge L, Yang Y, Li M, Jia Y, Yao X, Zhu Z (2017) Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater 29(17):1606793. https://doi.org/10.1002/adma.201606793

    Article  CAS  Google Scholar 

  37. Wu X, Wang W, Li F, Khaimanov S, Tsidaeva N, Lahoubi M (2016) PEG-assisted hydrothermal synthesis of CoFe2O4 nanoparticles with enhanced selective adsorption properties for different dyes. Appl Surf Sci 389:1003–1011. https://doi.org/10.1016/j.apsusc.2016.08.053

    Article  CAS  Google Scholar 

  38. Nie M, Li Y, Li L, He J, Hong P, Zhang K, Cai X, Kong L, Liu J (2021) Ultrathin iron-cobalt oxide nanosheets with enhanced H2O2 activation performance for efficient degradation of tetracycline. Appl Surf Sci 535:147655. https://doi.org/10.1016/j.apsusc.2020.147655

    Article  CAS  Google Scholar 

  39. Li X-H, Xu C-L, Han X-H, Qiao L, Wang T, Li F-S (2010) Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition. Nanoscale Res Lett 5(6):1039–1044. https://doi.org/10.1007/s11671-010-9599-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang M, Zhou X, Wang S, Xie X, Wang Y, Su X (2021) Fabrication of bioresource-derived porous carbon-supported iron as an efficient oxidase mimic for dual-channel biosensing. Anal Chem 93(6):3130–3137. https://doi.org/10.1021/acs.analchem.0c04386

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Zhou M, Cao W, Wang X, Wang Q, Li S, Wei H (2019) Light-responsive metal-organic framework as an oxidase mimic for cellular glutathione detection. Anal Chem 91(13):8170–8175

    Article  CAS  Google Scholar 

  42. Liu C, Cai Y, Wang J, Liu X, Ren H, Yan L, Zhang Y, Yang S, Guo J, Liu A (2020) Facile preparation of homogeneous copper nanoclusters exhibiting excellent tetraenzyme mimetic activities for colorimetric glutathione sensing and fluorimetric ascorbic acid sensing. ACS Appl Mater Interfaces 12(38):42521–42530. https://doi.org/10.1021/acsami.0c11983

    Article  CAS  PubMed  Google Scholar 

  43. Li H, Li J, Ai Z, Jia F, Zhang L (2018) Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew Chem 57(1):122–138. https://doi.org/10.1002/anie.201705628

    Article  CAS  Google Scholar 

  44. Huang L, Niu Y, Li R, Liu H, Wang Y, Xu G, Li Y, Xu Y (2019) VO x quantum dots with multienzyme-mimic activities and the application in constructing a three-dimensional (3D) coordinate system for accurate discrimination of the hydrogen peroxide over a broad concentration range. Anal Chem 91(9):5753–5761. https://doi.org/10.1021/acs.analchem.8b05923

    Article  CAS  PubMed  Google Scholar 

  45. Gong F, Yang N, Wang Y, Zhuo M, Zhao Q, Wang S, Li Y, Liu Z, Chen Q, Cheng L (2020) Oxygen-deficient bimetallic oxide FeWOX nanosheets as peroxidase-like nanozyme for sensing cancer via photoacoustic imaging. Small 16(46):e2003496. https://doi.org/10.1002/smll.202003496

    Article  CAS  PubMed  Google Scholar 

  46. He S-B, Zhuang Q-Q, Yang L, Lin M-Y, Kuang Y, Peng H-P, Deng H-H, Xia X-H, Chen W (2020) A heparinase sensor based on a ternary system of Hg2+-heparin-osmium nanoparticles. Anal Chem 92(1):1635–1642. https://doi.org/10.1021/acs.analchem.9b05222

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Ding D, Zhen Y, Guo R (2017) Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens Bioelectron 92:140–146. https://doi.org/10.1016/j.bios.2017.01.036

    Article  CAS  PubMed  Google Scholar 

  48. Amro M, Mansoor K, Amro A, Okoro K, Okhumale PI (2020) Kounis syndrome induced by protamine sulfate. Cureus 12(2):e6972

    PubMed  PubMed Central  Google Scholar 

  49. Carr JA, Silverman N (1999) The heparin-protamine interaction-a review. J Cardiovasc Surg 40(5):659–666

    CAS  Google Scholar 

  50. See WA, Smith JL (1991) Urinary levels of activated trypsin in whole-organ pancreas transplant patients with duodenocystostomies. Transplantation 52:630–633

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21775052 and No. 21575048) and the Science and Technology Development project of Jilin province, China (No. 20180414013GH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guannan Wang or Xingguang Su.

Ethics declarations

Ethics approval and consent to participate

All experiments were performed in compliance with the relevant laws and institutional guidelines, and the writing of informed consent for all samples was obtained from human subjects.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1448 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Chen, J., Wang, G. et al. Heparin-enhanced peroxidase-like activity of iron-cobalt oxide nanosheets for sensitive colorimetric detection of trypsin. Microchim Acta 189, 135 (2022). https://doi.org/10.1007/s00604-022-05227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05227-3

Keywords

Navigation