Skip to main content

Advertisement

Log in

Determination of tuberculosis-related volatile organic biomarker methyl nicotinate in vapor using fluorescent assay based on quantum dots and cobalt-containing porphyrin nanosheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Methyl nicotinate (MN) is a representative and typical volatile organic marker of Mycobacterium tuberculosis, and the specific detection of MN in human breath facilitates non-invasive, rapid, and accurate epidemic screening of tuberculosis infection. Herein, we constructed a fluorescent assay consisted of CdTe quantum dots (QD) and cobalt-metalized tetrakis(4-carboxyphenyl) porphyrin (CoTCPP) nanosheets to determine methyl nicotinate (MN) in vapor samples. Red-emission QD (λex=370 nm, λem=658 nm) acts as signal switches whose fluorescence signals can be effectively quenched by CoTCPP nanosheets but restored in the presence of MN. The strategy relied on the distinct binding affinity of cobalt ion and MN. MN restored the fluorescence of QD quenched by CoTCPP in a concentration-dependent manner, which exhibited a well-linear relationship in the range 1–100 μM, and a limit of detection of 0.59 μM. The proposed platform showed sensitivity and selectivity to detect MN in vapor samples with satisfactory RSD below 3.33%. The method is cheap, simple, and relatively rapid (detected within 4 min), which suggests a potential in tuberculosis diagnosis in resource- and professional-lacked areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Behr MA, Kaufmann E, Duffin J, Edelstein PH, Ramakrishnan L (2021) Latent tuberculosis: two centuries of confusion. Am J Respir Crit Care Med 204:142–148. https://doi.org/10.1164/rccm.202011-4239PP

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ayub A, Yale SH, Reed KD, Nasser RM, Gilbert SR (2004) Testing for latent tuberculosis. Clin Med Res 2:191–194. https://doi.org/10.3121/cmr.2.3.191

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kunst H (2006) Diagnosis of latent tuberculosis infection: the potential role of new technologies. Respir Med 100:2098–2106. https://doi.org/10.1016/j.rmed.2006.02.032

    Article  PubMed  Google Scholar 

  4. Ewer K, Deeks J, Alvarez L, Bryant S, Waller S, Andersen P, Monk P, Lalvani A (2003) Comparison of T-cell-based assay with tuberculin skin test for diagnosis of Mycobacterium tuberculosis infection in a school tuberculosis outbreak. Lancet 361:1168–1173. https://doi.org/10.1016/s0140-6736(03)12950-9

    Article  PubMed  Google Scholar 

  5. Richard Menzies BV (1992) Effect of bacille Calmette-Guérin vaccination on tuberculin reactivity. Am Rev Respir Dis 145:621–625. https://doi.org/10.1164/ajrccm/145.3.621

    Article  Google Scholar 

  6. Morad K. Nakhleh RJ, A’laa Gharra, Anke Binder, Yoav Y. Broza, Mellissa Pascoe, Keertan Dheda, Haick H (2014) Detecting active pulmonary tuberculosis with a breath test using nanomaterial based sensors. Eur Respir J 43:1522-1525. https://doi.org/10.1183/09031936.00019114

    Article  Google Scholar 

  7. Vishinkin R, Busool R, Mansour E, Fish F, Esmail A, Kumar P, Gharaa A, Cancilla JC, Torrecilla JS, Skenders G, Leja M, Dheda K, Singh S, Haick H (2021) Profiles of volatile biomarkers detect tuberculosis from skin. Adv Sci (Weinh) 8:e2100235. https://doi.org/10.1002/advs.202100235

    Article  CAS  Google Scholar 

  8. Syhre M, Chambers ST (2008) The scent of Mycobacterium tuberculosis. Tuberculosis 88:317–323. https://doi.org/10.1016/j.tube.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  9. Mellors TR, Nasir M, Franchina FA, Smolinska A, Blanchet L, Flynn JL, Tomko J, O'Malley M, Scanga CA, Lin PL, Wagner J, Hill JE (2018) Identification of Mycobacterium tuberculosis using volatile biomarkers in culture and exhaled breath. J Breath Res 13:016004. https://doi.org/10.1088/1752-7163/aacd18

    Article  CAS  PubMed  Google Scholar 

  10. Scott-Thomas A, Syhre M, Epton M, Murdoch DR, Chambers ST (2013) Assessment of potential causes of falsely positive Mycobacterium tuberculosis breath test. Tuberculosis (Edinb) 93:312–317. https://doi.org/10.1016/j.tube.2013.01.005

    Article  CAS  Google Scholar 

  11. Syhre M, Manning L, Phuanukoonnon S, Harino P, Chambers ST (2009) The scent of Mycobacterium tuberculosis--part II breath. Tuberculosis (Edinb) 89:263–266. https://doi.org/10.1016/j.tube.2009.04.003

    Article  CAS  Google Scholar 

  12. Albertson N, John MGA (1965) Biosynthesis of nicotinic acid by mycobacterium tuberculosis. J Bateriol 89:540–541. https://doi.org/10.1128/jb.89.2.540-541.1965

    Article  CAS  Google Scholar 

  13. Bhatter P, Raman K, Janakiraman V (2017) Elucidating the biosynthetic pathways of volatile organic compounds in Mycobacterium tuberculosis through a computational approach. Mol Bio Syst 13:750–755. https://doi.org/10.1039/c6mb00796a

    Article  CAS  Google Scholar 

  14. El Ridi MS, Abdel Kader MM, Habib A, Abdel Aziz A (1953) Role of tubercle bacilli in raising the nicotinic acid level in the blood. J Egypt Med Assoc 36:435–444

    Google Scholar 

  15. Suckling DM, Sagar RL (2011) Honeybees Apis mellifera can detect the scent of Mycobacterium tuberculosis. Tuberculosis (Edinb) 91:327–328. https://doi.org/10.1016/j.tube.2011.04.008

    Article  CAS  Google Scholar 

  16. Mgode GF, Weetjens BJ, Nawrath T, Lazar D, Cox C, Jubitana M, Mahoney A, Kuipers D, Machang'u RS, Weiner J, Schulz S, Kaufmann SH (2012) Mycobacterium tuberculosis volatiles for diagnosis of tuberculosis by Cricetomys rats. Tuberculosis (Edinb) 92:535–542. https://doi.org/10.1016/j.tube.2012.07.006

    Article  CAS  Google Scholar 

  17. Broza YY, Vishinkin R, Barash O, Nakhleh MK, Haick H (2018) Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem Soc Rev 47:4781–4859. https://doi.org/10.1039/c8cs00317c

    Article  CAS  PubMed  Google Scholar 

  18. Park CH, Schroeder V, Kim BJ, Swager TM (2018) Ionic liquid-carbon nanotube sensor arrays for human breath related volatile organic compounds. Acs Sensors 3:2432–2437. https://doi.org/10.1021/acssensors.8b00987

    Article  CAS  PubMed  Google Scholar 

  19. Bhattacharyya D, Sarswat PK, Free ML (2017) Quantum dots and carbon dots based fluorescent sensors for TB biomarkers detection. Vacuum 146:606–613. https://doi.org/10.1016/j.vacuum.2017.02.003

    Article  CAS  Google Scholar 

  20. Wang Q, Yin QB, Fan Y, Zhang L, Xu Y, Hu O, Guo XM, Shi Q, Fu HY, She YB (2019) Double quantum dots-nanoporphyrin fluorescence-visualized paper-based sensors for detecting organophosphorus pesticides. Talanta 199:46–53. https://doi.org/10.1016/j.talanta.2019.02.023

    Article  CAS  PubMed  Google Scholar 

  21. Fu H, Hu O, Fan Y, Hu Y, Huang J, Wang Z, She Y (2019) Rational design of an “on-off-on” fluorescent assay for chiral amino acids based on quantum dots and nanoporphyrin. Sensors Actuators B Chem 287:1–8. https://doi.org/10.1016/j.snb.2019.02.023

    Article  CAS  Google Scholar 

  22. Zhao C, Zhang L, Wang Q, Zhang L, Zhu P, Yu J, Zhang Y (2021) Porphyrin-based covalent organic framework thin films as cathodic materials for “on-off-on” photoelectrochemical sensing of lead ions. ACS Appl Mater Interfaces 13:20397–20404. https://doi.org/10.1021/acsami.1c00335

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Maennel MJ, Hauck N, Patel HP, Auernhammer GK, Chae S, Fery A, Li J, Thiele J (2021) Embedment of quantum dots and biomolecules in a dipeptide hydrogel formed in situ using microfluidics. Angew Chem Int Edit 60:6724–6732. https://doi.org/10.1002/anie.202015340

    Article  CAS  Google Scholar 

  24. Kamal Z, Ghobadi MZ, Mohseni SM, Ghourchian H (2021) High-performance porphyrin-like graphene quantum dots for immuno-sensing of Salmonella typhi. Biosens Bioelectron 188:113334. https://doi.org/10.1016/j.bios.2021.113334

    Article  CAS  PubMed  Google Scholar 

  25. Ray RS, Sarma B, Mohanty S, Prisbrey K, Misra M (2015) Assessment of metals in detection of TB biomarkers: novel computational approach. Mater Chem Phys 161:1–8. https://doi.org/10.1016/j.matchemphys.2015.04.018

    Article  CAS  Google Scholar 

  26. Bhattacharyya D, Smith YR, Mohanty SK, Misra M (2016) Titania nanotube array sensor for electrochemical detection of four predominate tuberculosis volatile biomarkers. J Electrochem Soc 163:B206–B214. https://doi.org/10.1149/2.0221606jes

    Article  CAS  Google Scholar 

  27. Bhattacharyya D, Smith YR, Misra M, Mohanty SK (2015) Electrochemical detection of methyl nicotinate biomarker using functionalized anodized titania nanotube arrays. Mater Res Express 2:025002. https://doi.org/10.1088/2053-1591/2/2/025002

    Article  CAS  Google Scholar 

  28. Bairagi PK, Goyal A, Verma N (2019) Methyl nicotinate biomarker of tuberculosis voltammetrically detected on cobalt nanoparticle-dispersed reduced graphene oxide-based carbon film in blood. Sensors Actuators B Chem 297:126754. https://doi.org/10.1016/j.snb.2019.126754

    Article  CAS  Google Scholar 

  29. Li SJ, Zhan XJ, Bai WS, Zheng JB (2020) Controllable synthesis of Ni/Co-TCPP MOFs with different morphologies and their application in electrochemical detection of glucose. J Electrochem Soc 167:127506 https://doi.org/Artn12750610.1149/1945-7111/Abac2a

    Article  CAS  Google Scholar 

  30. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860. https://doi.org/10.1021/cm034081k

    Article  CAS  Google Scholar 

  31. Chen S, Yu YL, Wang JH (2018) Inner filter effect-based fluorescent sensing systems: a review. Anal Chim Acta 999:13–26. https://doi.org/10.1016/j.aca.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  32. Thomas DGECS, William FG, Rudolf Seitz W, Grant CL (1986) Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ Sci Technol 20:1162–1166. https://doi.org/10.1021/es00153a012

    Article  Google Scholar 

  33. Lakowicz JR (2010) Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York

  34. Gao J, Fei XN, Li GM, Jiang YG, Li SY (2018) The effects of QD stabilizer structures on pH dependence, fluorescence characteristics, and QD sizes. J Phys D-Appl Phys 51:285101 https://doi.org/Artn28510110.1088/1361-6463/Aac909

    Article  Google Scholar 

  35. Chen TW, Arumugam R, Chen SM, Altaf M, Manohardas S, Abuhasil MSA, Ali MA (2020) Ultrasonic preparation and nanosheets supported binary metal oxide nanocomposite for the effective application towards the electrochemical sensor. Ultrason Sonochem 64:105007 https://doi.org/ARTN10500710.1016/j.ultsonch.2020.105007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the Science and Technology Planning Project of Guangzhou (No. 202002020084), the Project of Guangdong Administration of Traditional Chinese Medicine (No. 20191014), and the National Natural Science Foundation of China (No. 21675177).

Author information

Authors and Affiliations

Authors

Contributions

Qidi He and Shuangshuang Cai contributed equally to this work. Qidi He: conceptualization, methodology, validation, writing (original draft), writing (review and editing), and visualization. Shuangshuang Cai: methodology, investigation, data curation, writing (original draft), and visualization. Jinghao Wu: writing (review and editing) and visualization. Ou Hu: writing (review and editing). Lushan Liang: writing (review and editing). Zuanguang Chen: idea, supervision, and funding acquisition.

Corresponding author

Correspondence to Zuanguang Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 490 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Cai, S., Wu, J. et al. Determination of tuberculosis-related volatile organic biomarker methyl nicotinate in vapor using fluorescent assay based on quantum dots and cobalt-containing porphyrin nanosheets. Microchim Acta 189, 108 (2022). https://doi.org/10.1007/s00604-022-05212-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05212-w

Keywords

Navigation