Skip to main content
Log in

Determination of cyanide based on a dual-emission ratiometric nanoprobe using silver sulfide quantum dots and silicon nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel ratiometric fluorescent nanoprobe was designed for the sensitive determination of cyanide anion (CN) by the electrostatic attraction between positively charged silicon nanoparticles (Si NPs) and negatively charged silver sulfide quantum dots (Ag2S QDs). The nanoprobe exhibited two well-resolved emission peaks at 446 nm and 540 nm under a single excitation wavelength (360 nm). In the presence of CN, the fluorescence of Ag2S QDs at 540 nm was remarkably quenched, while the fluorescence of the Si NPs at 446 nm remained constant, establishing the desired conditions for ratiometric fluorescence detection. Under optimal conditions, the ratiometric fluorescence assay showed good linearity (R2 = 0.9921) within the range 0.05–15 μM, and the limit of detection was calculated to be 56 nM (at an S/N ratio of 3). The proposed Ag2S QD/Si NP nanoprobe has been successfully used to determine CN in water and sprouting potato samples with satisfactory recoveries in the range 97–110.5%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Udhayakumari D (2018) Chromogenic and fluorogenic chemosensors for lethal cyanide ion. A comprehensive review of the year 2016. Sensors Actuators B Chem 259:1022–1057

    Article  CAS  Google Scholar 

  2. Vennesland B (1981) European Molecular Biology Organization, Cyanide in biology. London; New York: Publisher

  3. Wang F, Wang L, Chen X, Yoon J (2014) Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem Soc Rev 43:4312–4324

    Article  CAS  Google Scholar 

  4. Villanueva CM, Kogevinas M, Cordier S, Templeton MR, Vermeulen R, Nuckols JR, Nieuwenhuijsen MJ, Levallois P (2014) Assessing exposure and health consequences of chemicals in drinking water: current state of knowledge and research needs. Environ Health Perspect 122:213–21

    Article  CAS  Google Scholar 

  5. Shamsipur M, Karimi Z, Tabrizi MA (2017) A novel electrochemical cyanide sensor using gold nanoparticles decorated carbon ceramic electrode. Microchem J 133:485–489

    Article  CAS  Google Scholar 

  6. Desharnais B, Huppé G, Lamarche M, Mireault P, Skinner CD (2012) Cyanide quantification in post-mortem biological matrices by headspace GC–MS. Forensic Sci Int 222:346–351

    Article  CAS  Google Scholar 

  7. Sulistyarti H, Kolev SD (2013) Online ligand exchange in the determination of weak acid dissociable cyanide by gas diffusion-flow injection analysis. Microchem J 111:103–107

    Article  CAS  Google Scholar 

  8. Tian L, Li Y, Ren T, Tong Y, Yang B, Li Y (2017) Novel bimetallic gold− silver nanoclusters with “Synergy”-enhanced fluorescence for cyanide sensing, cell imaging and temperature sensing. Talanta 170:530–539

    Article  CAS  Google Scholar 

  9. Cheng C, Chen H-Y, Wu C-S, Meena JS, Simon T, Ko F-H (2016) A highly sensitive and selective cyanide detection using a gold nanoparticle-based dual fluorescence–colorimetric sensor with a wide concentration range. Sensors Actuators B Chem 227:283–290

    Article  CAS  Google Scholar 

  10. Achadu OJ, Nyokong T (2019) Fluorescence “turn-ON” nanosensor for cyanide ion using supramolecular hybrid of graphene quantum dots and cobalt pyrene-derivatized phthalocyanine. Dyes Pigm 160:328–335

    Article  CAS  Google Scholar 

  11. Rajamanikandan R, Ilanchelian M (2018) Protein-localized bright-red fluorescent gold nanoclusters as cyanide-selective colorimetric and fluorometric nanoprobes. ACS Omega 3:14111–14118

    Article  CAS  Google Scholar 

  12. Zhang G, Qiao Y, Xu T, Zhang C, Zhang Y, Shi L, Shuang S, Dong C (2015) Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission. Nanoscale 7:12666–12672

    Article  CAS  Google Scholar 

  13. Zhao S, Wu F, Zhao Y, Liu Y, Zhu L (2016) Phenothiazine-cyanine-functionalized upconversion nanoparticles for LRET and colorimetric sensing of cyanide ions in water samples. J Photochem Photobiol A Chem 319:53–61

    Article  Google Scholar 

  14. Zhang J, Dong L, Yu S-H (2015) A selective sensor for cyanide ion (CN) based on the inner filter effect of metal nanoparticles with photoluminescent carbon dots as the fluorophore. Sci Bull 60:785–791

    Article  CAS  Google Scholar 

  15. Touceda-Varela A, Stevenson EI, Galve-Gasion JA, Dryden DT, Mareque-Rivas JC (2008) Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots. Chem Commun 1:1998–2000

    Article  Google Scholar 

  16. Noipa T, Tuntulani T, Ngeontae W (2013) Cu2+-modulated cysteamine-capped CdS quantum dots as a turn-on fluorescence sensor for cyanide recognition. Talanta 105:320–326

    Article  CAS  Google Scholar 

  17. Yang H, Yang Y, Liu S, Zhan X, Zhou H, Li X, Yuan Z (2020) Ratiometric and sensitive cyanide sensing using dual-emissive gold nanoclusters. Anal Bioanal Chem 412:5819–5826

    Article  Google Scholar 

  18. Long L, Han Y, Yuan X, Cao S, Liu W, Chen Q, Wang K, Han Z (2020) A novel ratiometric near-infrared fluorescent probe for monitoring cyanide in food samples. Food Chem 331:127359

    Article  CAS  Google Scholar 

  19. Chao J, Li Z, Zhang Y, Huo F, Yin C, Tong H, Liu Y (2016) A ratiometric fluorescence probe for monitoring cyanide ion in live cells. Sensors Actuators B Chem 228:192–199

    Article  CAS  Google Scholar 

  20. Xu N, Yuan Y, Yin J-H, Wang X, Meng L (2017) One-pot hydrothermal synthesis of luminescent silicon-based nanoparticles for highly specific detection of oxytetracycline via ratiometric fluorescent strategy. RSC adv 7:48429–48436

    Article  CAS  Google Scholar 

  21. Licciardello N, Hunoldt S, Bergmann R, Singh G, Mamat C, Faramus A, Ddungu JL, Silvestrini S, Maggini M, De Cola L (2018) Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. Nanoscale 10:9880–9891

    Article  CAS  Google Scholar 

  22. Zhu B, Ren G, Tang M, Chai F, Qu F, Wang C, Su Z (2018) Fluorescent silicon nanoparticles for sensing Hg2+ and Ag+ as well visualization of latent fingerprints. Dyes Pigm 149:686–695

    Article  CAS  Google Scholar 

  23. Borsella E, D’Amato R, Falconieri M, Trave E, Panariti A, Rivolta I (2013) An outlook on the potential of Si nanocrystals as luminescent probes for bioimaging. J Mater Res 28:193–204

    Article  CAS  Google Scholar 

  24. Maier-Flaig F, Rinck J, Stephan M, Bocksrocker T, Bruns M, Kübel C, Powell AK, Ozin GA, Lemmer U (2013) Multicolor silicon light-emitting diodes (SiLEDs). Nano Lett 13:475–480

    Article  CAS  Google Scholar 

  25. Chen X, Lu Q, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S (2018) Highly sensitive and selective determination of copper (II) based on a dual catalytic effect and by using silicon nanoparticles as a fluorescent probe. Microchim Acta 185:1–7

    Article  Google Scholar 

  26. Han Y, Chen Y, Liu J, Niu X, Ma Y, Ma S, Chen X (2018) Room-temperature synthesis of yellow-emitting fluorescent silicon nanoparticles for sensitive and selective determination of crystal violet in fish tissues. Sensors Actuators B Chem 263:508–516

    Article  CAS  Google Scholar 

  27. Wang C, Wang Y, Xu L, Zhang D, Liu M, Li X, Sun H, Lin Q, Yang B (2012) Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: tunable photoluminescence from red to near infrared. Small 8:3137–3142

    Article  CAS  Google Scholar 

  28. Jiang P, Zhu C-N, Zhang Z-L, Tian Z-Q, Pang D-W (2012) Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33:5130–5135

    Article  CAS  Google Scholar 

  29. Llano-Suárez P, Bouzas-Ramos D, Costa-Fernández JM, Soldado A, Fernández-Argüelles MT (2019) Near-infrared fluorescent nanoprobes for highly sensitive cyanide quantification in natural waters. Talanta 192:463–470

    Article  Google Scholar 

  30. Chen J, Wang M, Su X (2019) Ratiometric fluorescent detection of azodicarbonamide based on silicon nanoparticles and quantum dots. Sensors Actuators B Chem 296:126643

    Article  CAS  Google Scholar 

  31. Zhang Y, Liu Y, Li C, Chen X, Wang Q (2014) Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius. J Phys Chem C 118:4918–4923

    Article  CAS  Google Scholar 

  32. Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q (2010) Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J Am Chem Soc 132:1470–1471

    Article  CAS  Google Scholar 

  33. Vojoudi H, Badiei A, Bahar S, Ziarani GM, Faridbod F, Ganjali MR (2017) Post-modification of nanoporous silica type SBA-15 by bis (3-triethoxysilylpropyl) tetrasulfide as an efficient adsorbent for arsenic removal. Powder Tech 319:271–278

    Article  CAS  Google Scholar 

  34. Baek SH, Nguyen TP, Park KY, Ha S, Rafique R, Kailasa SK, Park TJ (2018) Synthesis of fluorescent silicon quantum dots for ultra-rapid and selective sensing of Cr (VI) ion and biomonitoring of cancer cells. Mater Sci Eng C 93:429–436

    Article  Google Scholar 

  35. Rahimi F, Anbia M, Farahi M (2021) Aqueous synthesis of L-methionine capped PbS quantum dots for sensitive detection and quantification of arsenic (III). J Photochem Photobiol A Chem 417:113361

    Article  CAS  Google Scholar 

  36. Nsanzamahoro S, Mutuyimana FP, Han Y, Ma S, Na M, Liu J, Ma Y, Ren C, Chen H, Chen X (2019) Highly selective and sensitive detection of catechol by one step synthesized highly fluorescent and water-soluble silicon nanoparticles. Sensors Actuators B Chem 281:849–856

    Article  CAS  Google Scholar 

  37. Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X (2017) One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2, 4, 6-trinitrophenol in aqueous solution. Anal Chem 89:3001–3008

    Article  CAS  Google Scholar 

  38. Dong Y, Wang R, Tian W, Chi Y, Chen G (2014) “Turn-on” fluorescent detection of cyanide based on polyamine-functionalized carbon quantum dots. RSC Adv 4:3701–3705

    CAS  Google Scholar 

  39. Zu FL, Yan FY, Bai ZJ, Xu JX, Wang YY, Huang YC, Zhou XG (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914

    Article  CAS  Google Scholar 

  40. Rice EW, Baird RB, Eaton AD, (2017) Standard methods for the examination of water and wastewater 23rd Edition. Association APH, Association AWW 4: 46-48.

Download references

Funding

This study received financial support from the Research Council of Iran University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Anbia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 382 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, F., Anbia, M. Determination of cyanide based on a dual-emission ratiometric nanoprobe using silver sulfide quantum dots and silicon nanoparticles. Microchim Acta 189, 115 (2022). https://doi.org/10.1007/s00604-022-05209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05209-5

Keywords

Navigation