Skip to main content
Log in

Electrospun nanofibers modified with zeolitic imidazolate framework-8 for electrochemiluminescent determination of terbutaline

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

For the first time it is demonstrated that zeolitic imidazolate framework-8 electrospun nanofibers (ZIF-8 NF) could serve as electrochemiluminescence (ECL) accelerator for the facile detection of terbutaline residual. A novel ECL sensor for the determination of terbutaline was fabricated based on ZIF-8 NF. The ZIF-8 NF were successfully prepared according to electrospinning and in-situ growth method. First, chitosan was modified on the surface of the electrode, and then the ZIF-8 NF was modified onto the upper layer of the chitosan. Taking advantages of chitosan and ZIF-8 NF in conductivity and electrocatalysis, the modified electrode presents obvious ECL phenomenon in 0.2 M PBS solution (pH 10.0) containing 0.025 M luminol. After the addition of terbutaline, ECL intensity decreased significantly, and the decreasing value showed a linear relationship with the logarithm of terbutaline concentration. The linear range was from 2.0 × 10−10 to 2.0 × 10−5 M, and the detection limit was 1.41 × 10−11 M (3σ/m). The method had high sensitivity, good stability, and good applicability to actual pork samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khammy MM, Truong CKH, Wright CH, Angus JA (2020) The β2-adrenoceptor agonist bronchodilators terbutaline and orciprenaline are also weak α1-adrenoceptor antagonists. Eur J Pharmacol 882:173304. https://doi.org/10.1016/j.ejphar.2020.173304

    Article  CAS  PubMed  Google Scholar 

  2. Chen X, Luo Y, Shi B, Gao ZG, Du YG, Liu XM, Zhao WJ, Lin BC (2015) Determination of beta-agonists in swine hair by μFIA and chemiluminescence. Electrophoresis 36:986–993. https://doi.org/10.1002/elps.201400412

    Article  CAS  PubMed  Google Scholar 

  3. Lin XY, Wang YF, Zou MM, Ni YN (2019) Sensitive and fast analysis of terbutaline sulfate in food using a modified electrode based on a MoS2/AuNPs nanocomposite. Anal Methods-UK 11:1353–1360. https://doi.org/10.1039/C9AY00110G

    Article  CAS  Google Scholar 

  4. Althanyan MS, Assi KH, Clark BJ, Hanaee J (2011) Microemulsion high performance liquid chromatography (MELC) method for the determination of terbutaline in pharmaceutical preparation. J Pharmaceut Biomed 55:397–402. https://doi.org/10.1016/j.jpba.2011.01.027

    Article  CAS  Google Scholar 

  5. Faiyazuddin Md, Rauf A, Ahmad N, Ahmad S, Iqbal Z, Talegaonkar S, Bhatnagar A, Khar RK, Ahmad FJ (2011) A validated HPTLC method for determination of terbutaline sulfate in biological samples: application to pharmacokinetic study. Saudi Pharm J 19:185–191. https://doi.org/10.1016/j.jsps.2011.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bukkitgar SD, Shetti NP, Kulkarni RM, Halbhavi SB, Wasim M, Mylar M, Durgi PS, Chirmure SS (2016) Electrochemical oxidation of nimesulide in aqueous acid solutions based on TiO2 nanostructure modified electrode as a sensor. J Eiectroanal Chem 778:103–109. https://doi.org/10.1016/j.jelechem.2016.08.024

    Article  CAS  Google Scholar 

  7. Hu LZ, Xu GB (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39:3275–3304. https://doi.org/10.1039/B923679C

    Article  CAS  PubMed  Google Scholar 

  8. Edwards M, McConnell P, Schafer DA, Cooper JA (2015) CPI motif interaction is necessary for capping protein function in cells. Nat Commun 6:8415. https://doi.org/10.1038/ncomms9415

    Article  CAS  PubMed  Google Scholar 

  9. Zhang P, Jiang J, Yuan R, Zhuo Y, Chai YQ (2018) Highly ordered and field-free 3D DNA nanostructure: the next generation of DNA nanomachine for rapid single-step sensing. J Am Chem Soc 140:9361–9364. https://doi.org/10.1021/jacs.8b04648

    Article  CAS  PubMed  Google Scholar 

  10. Xie SB, Dong YG, Yuan YL, Chai YQ, Yuan R (2016) Ultrasensitive lipopolysaccharides detection based on doxorubicin conjugated N-(aminobutyl)-N-(ethylisoluminol) as electrochemiluminescence indicator and self-assembled tetrahedron DNA dendrimers as nanocarriers. Anal Chem 88:5218–5224. https://doi.org/10.1021/acs.analchem.6b00276

    Article  CAS  PubMed  Google Scholar 

  11. Jiang D, Du XJ, Liu Q, Zhou L, Qian J, Wang K (2015) One-step thermal-treatment route to fabricate well-dispersed ZnO nanocrystals on nitrogen-doped graphene for enhanced electrochemiluminescence and ultrasensitive detection of pentachlorophenol. ACS Appl Mater Inter 7:3093–3100. https://doi.org/10.1021/am507163z

    Article  CAS  Google Scholar 

  12. Chen F, Li HL, Yan JL, Guo HM, Tu YF (2017) Progress of the electrochemiluminescence biosensing strategy for clinical diagnosis with luminol as the sensing probe. ChemElectroChem 4:1587–1593. https://doi.org/10.1002/celc.201700465

    Article  CAS  Google Scholar 

  13. Li M, Gao HF, Wang XF, Wang YF, Qi HL, Zhang CX (2017) A fluorine-doped tin oxide electrode modified with gold nanoparticles for electrochemiluminescent determination of hydrogen peroxide released by living cells. Microchim Acta 184:603–610. https://doi.org/10.1007/s00604-016-2051-9

    Article  CAS  Google Scholar 

  14. Anjass MH, Kastner K, Nägele F, Ringenberg M, Boas JF, Zhang J, Bond A, Jacob T, Streb C (2019) Reply to comment on stabilization of low-valent iron(I) in a high-valent vanadium(V) oxide cluster. Angew Chem Int Edit 58:10048–10050. https://doi.org/10.1002/anie.201902460

    Article  CAS  Google Scholar 

  15. Zhong X, Li X, Zhuo Y, Chai YQ, Yuan R (2020) Synthesizing anode electrochemiluminescent self-catalyzed carbon dots-based nanocomposites and its application in sensitive ECL biosensor for microRNA detection. Sensor Actuat B-Chem 305:127490. https://doi.org/10.1016/j.snb.2019.127490

    Article  CAS  Google Scholar 

  16. Yulia P, Andriy B, Weldegebriel Y, Aram B, Tatiana L (2019) Iron-/nitrogen-doped electrocatalytically active carbons for the oxygen reduction reaction with low amounts of cobalt. ACS Omega 4:19548–19555. https://doi.org/10.1021/acsomega.9b01534

    Article  CAS  Google Scholar 

  17. Yang MH, Duan CX, Zeng XJ, Li JJ, Liu CY, Zeng LJ, Zhang Y, Wang K, Xi HX (2021) Facile fabrication of nanoscale hierarchical porous zeolitic imidazolate frameworks for enhanced toluene adsorption capacity. Rare Met 40:471–477. https://doi.org/10.1007/s12598-020-01455-9

    Article  CAS  Google Scholar 

  18. Chu YR, Gao F, Gao F, Wang QX (2019) Enhanced stripping voltammetric response of Hg2+, Cu2+, Pb2+ and Cd2+ by ZIF-8 and its electrochemical analytical application. J Eiectroanal Chem 835:293–300. https://doi.org/10.1016/j.jelechem.2019.01.053

    Article  CAS  Google Scholar 

  19. Zang RH, He Y, Yuan R, Chai YQ (2016) An ultrasensitive electrochemiluminescence immunosensor based on zeolitic imidazolate frameworks encapsulating spherical graphite crystals. J Electroanal Chem 781:284–288. https://doi.org/10.1016/j.jelechem.2016.07.038

    Article  CAS  Google Scholar 

  20. Xia TL, Chen C (2021) Evolution of pressure drop across electrospun nanofiber filters clogged by solid particles and its influence on indoor particulate air pollution control. J Hazard Mater 402:123479. https://doi.org/10.1016/j.jhazmat.2020.123479

    Article  CAS  PubMed  Google Scholar 

  21. Khodadadi M, Alijani S, Montazeri M, Esmaeilizadeh N, Sadeghi-Soureh S, Pilehvar-Soltanahmadi Y (2020) Recent advances in electrospun nanofiber-mediated drug delivery strategies for localized cancer chemotherapy. J Biomed Mater Res A 108:1444–1458. https://doi.org/10.1002/jbm.a.36912

    Article  CAS  PubMed  Google Scholar 

  22. Zarei M, Samimi A, Khorram M, Abdi MM, Golestaneh SI (2021) Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Int J Biolmacromol 168:175–186. https://doi.org/10.1016/j.ijbiomac.2020.12.031

    Article  CAS  Google Scholar 

  23. Wong D, Abuzalat O, Ko J, Lee J, Kim S, Park SS (2020) Intense pulsed light-treated near-field electrospun nanofiber on a quartz tuning fork for multimodal gas sensors. ACS Appl Mater Inter 12:24308–24318. https://doi.org/10.1021/acsami.0c02263

    Article  CAS  Google Scholar 

  24. Crapnell RD, Street RJ, FerreiraSilva V, Peeters DMP, M, Banks CE, (2021) Electrospun nylon fibers with integrated polypyrrole molecularly imprinted polymers for the detection of glucose. Anal Chem 93:13235–13241. https://doi.org/10.1021/acs.analchem.1c02472

    Article  CAS  PubMed  Google Scholar 

  25. Yang X, Feng B, Yang P, Ding YL, Chen Y, Fei JJ (2014) Electrochemical determination of toxic ractopamine at an ordered mesoporous carbon modified electrode. Food Chem 145:619–624. https://doi.org/10.1016/j.foodchem.2013.08.093

    Article  CAS  PubMed  Google Scholar 

  26. Zhou JK, Niu XH, Wang Z, Cui YQ, Wang JC, Yang CH, Huo ZQ, Wang R (2020) Roles and mechanism analysis of chitosan as a green additive in low-tech node copper film chemical mechanical polishing. Colloid Surface A 586:124293. https://doi.org/10.1016/j.colsurfa.2019.124293

    Article  CAS  Google Scholar 

  27. Cui HF, Zhang TT, Lv QY, Song XJ, Zhai XJ, Wang GG (2019) An acetylcholinesterase biosensor based on doping Au nanorod@SiO2 nanoparticles into TiO2-chitosan hydrogel for detection of organophosphate pesticides. Biosens Bioelectron 141:111452. https://doi.org/10.1016/j.bios.2019.111452

    Article  CAS  PubMed  Google Scholar 

  28. Wu FF, Zhou Y, Zhang H, Yuan R, Chai YQ (2018) Electrochemiluminescence peptide-based biosensor with hetero-nanostructures as coreaction accelerator for the ultrasensitive determination of tryptase. Anal Chem 90:2263–2270. https://doi.org/10.1021/acs.analchem.7b04631

    Article  CAS  PubMed  Google Scholar 

  29. Wong A, Santos AM, Baccarin M, Cavalheiro ÉTG, Fatibello-Filho, (2019) Simultaneous determination of environmental contaminants using a graphite oxide – polyurethane composite electrode modified with cyclodextrin. Mat Sci Eng C-Mater 99:1415–1423. https://doi.org/10.1016/j.msec.2019.02.093

    Article  CAS  Google Scholar 

  30. Lin XY, Wang YF, Zou MM, Ni YN (2019) Sensitive and fast analysis of terbutaline sulfate in food using a modified electrode based on a MoS2/Au NPs nanocomposite. Anal Methods-UK 11:1353–1360. https://doi.org/10.1039/C9AY00110G

    Article  CAS  Google Scholar 

  31. Teker T, Aslanoglu M (2019) Sensitive determination of terbutaline using a platform based on nanoparticles of europium oxide and carbon nanotubes. Electroanal 31:146–152. https://doi.org/10.1002/elan.201800554

    Article  CAS  Google Scholar 

  32. Gopal P, Reddy TM (2018) Fabrication of carbon-based nanomaterial composite electrochemical sensor for the monitoring of terbutaline in pharmaceutical

  33. formulations. Colloids Surfaces A Physicochem. Eng. Asp. 538: 600–609. https://doi.org/10.1016/j.colsurfa.2017.11.059.

  34. Kalambate PK, Rawool CR, Srivastava AK (2017) Fabrication of graphene nanosheet–multiwalled carbon nanotube–polyaniline modified carbon paste electrode for the simultaneous electrochemical determination of terbutaline sulphate and guaifenesin. New J Chem 41:7061–7072. https://doi.org/10.1039/C7NJ00101K

    Article  CAS  Google Scholar 

  35. Li Y, Ye Z, Zhou J, Liu J, Song G, Zhang K, Ye B (2012) A new voltammetric sensor based on poly(L-arginine)/graphene-Nafion composite film modified electrode for sensitive determination of Terbutaline sulfate. J Electroanal Chem 687:51–57. https://doi.org/10.1016/j.jelechem.2012.09.045

    Article  CAS  Google Scholar 

  36. Lin X, Ni Y, Kokot S (2013) A novel electrochemical sensor for the analysis of β-agonists: the poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode. J Hazard Mater 260:508–517. https://doi.org/10.1016/j.jhazmat.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  37. Teker T, Aslanoglu M (2019) Sensitive determination of terbutaline using a platform based on nanoparticles of europium oxide and carbon nanotubes. Electroanalysis 31:146–152. https://doi.org/10.1002/elan.201800554

    Article  CAS  Google Scholar 

  38. Du W, Zhao G, Fu Q, Sun M, Zhou HY, Chang C (2014) Combined microextraction by packed sorbent and high-performance liquid chromatography–ultraviolet detection for rapid analysis of ractopamine in porcine muscle and urine samples. Food Chem 145:789–795. https://doi.org/10.1016/j.foodchem.2013.08.094

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by Jilin Natural Science Foundation (YDZJ202101ZYTS177).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Lu or Li Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Lu, J., Zhang, X. et al. Electrospun nanofibers modified with zeolitic imidazolate framework-8 for electrochemiluminescent determination of terbutaline. Microchim Acta 189, 99 (2022). https://doi.org/10.1007/s00604-022-05207-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05207-7

Keywords

Navigation