Skip to main content
Log in

Novel electrochemical sensor modified with molecularly imprinted polymers for determination of enrofloxacin in marine environment

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Molecularly imprinted polymers were synthesized by gel–sol method with multi-walled carbon nanotubes as support and enrofloxacin as a template and further modified on the surface of glassy carbon electrode to construct a molecularly imprinted electrochemical sensor. The performance of the imprinted electrochemical sensor was thoroughly investigated by using cyclic voltammetry and differential pulse voltammetry. The influence of imprinted polymers amount, electrolyte pH, and incubation time on the sensor performance was investigated for the detection of enrofloxacin. Under the optimal experimental conditions in a three-electrode system with the modified electrode as the working electrode the differential pulse voltammetry response current of the sensor had a good linear relationship at 0.2 V (vs. saturated calomel reference electrode) with the enrofloxacin concentration within 2.8 pM–28 μM and the limit of detection of the method was 0.9 pM. The competitive interference experiment showed that the imprinted electrochemical sensor could selectively recognize enrofloxacin. The method was applied to analyze spiked natural seawater, fish, and shrimp samples. The recovery was 96.4%–102%, and RSD was less than 4.3% (n = 3), indicating that the proposed imprinted electrochemical sensor was suitable for the determination of trace enrofloxacin in marine environment samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosa J, Leston S, Crespo D, Freitas A, Vila Pouca AS, Barbosa J, Lemos MFL, Pardal MÂ, Ramos F (2020) Uptake of enrofloxacin from seawater to the macroalgae Ulva and its use in IMTA systems. Aquaculture 516:734609. https://doi.org/10.1016/j.aquaculture.2019.734609

    Article  CAS  Google Scholar 

  2. Zhou XJ, Chen CX, Yue L, Sun YX, Ding HZ, Liu YH (2008) Excretion of enrofloxacin in pigs and its effect on ecological environment. Environ Toxicol Phar 26:272–277. https://doi.org/10.1016/j.etap.2008.04.004

    Article  CAS  Google Scholar 

  3. Slana M, Zigon D, Sollner-Dolenc M (2017) Enrofloxacin degradation in broiler chicken manure under field conditions and its residuals effects to the environment. Environ Sci Pollut R 24:13722–13731. https://doi.org/10.1007/s11356-017-8722-1

    Article  CAS  Google Scholar 

  4. Zhang Y, Wang L, Zhuang H, Li X, Gao X, An Z, Liu X, Yang H, Wei W, Zhang X (2019) Excessive use of enrofloxacin leads to growth inhibition of juvenile giant freshwater prawn Macrobrachium rosenbergii. Ecotox Environ Safe 169:344–352. https://doi.org/10.1016/j.ecoenv.2018.11.042

    Article  CAS  Google Scholar 

  5. Xiao Y, Lyu H, Tang J, Wang K, Sun H (2020) Effects of ball milling on the photochemistry of biochar: enrofloxacin degradation and possible mechanisms. Chem Eng J 384:123311. https://doi.org/10.1016/j.cej.2019.123311

    Article  CAS  Google Scholar 

  6. Tang YW, Li M, Gao X, Liu XY, Ma Y, Li Y, Xu YX, Li JR (2016) Preconcentration of the antibiotic enrofloxacin using a hollow molecularly imprinted polymer, and its quantitation by HPLC. Microchim Acta 183:589–596. https://doi.org/10.1007/s00604-015-1681-7

    Article  CAS  Google Scholar 

  7. Xiong JQ, Kurade MB, Jeon BH (2017) Ecotoxicological effects of enrofloxacin and its removal by monoculture of microalgal species and their consortium. Environ Pollut 226:486–493. https://doi.org/10.1016/j.envpol.2017.04.044

    Article  CAS  PubMed  Google Scholar 

  8. Álvarez-Esmorís C, Conde-Cid M, Ferreira-Coelho G, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Arias-Estévez M (2020) Adsorption/desorption of sulfamethoxypyridazine and enrofloxacin in agricultural soils. Sci Total Environ 706:136015. https://doi.org/10.1016/j.scitotenv.2019.136015

    Article  CAS  PubMed  Google Scholar 

  9. Huang J, Li D, Li R, Chen P, Zhang Q, Liu H, Lv W, Liu G, Feng Y (2020) One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin. J Hazard Mater 386:121634. https://doi.org/10.1016/j.jhazmat.2019.121634

    Article  CAS  PubMed  Google Scholar 

  10. Pei Y, Zeng L, Wen C, Wu K, Deng A, Li J (2021) Detection of enrofloxacin by flow injection chemiluminescence immunoassay based on cobalt hydroxide nanozyme. Microchim Acta 188:194. https://doi.org/10.1007/s00604-021-04846-6

    Article  CAS  Google Scholar 

  11. Sciscenko I, Garcia-Ballesteros S, Sabater C, Castillo MA, Escudero-Oñate C, Oller I, Arques A (2020) Monitoring photolysis and (solar photo)-Fenton of enrofloxacin by a methodology involving EEM-PARAFAC and bioassays: role of pH and water matrix. Sci Total Environ 719:137331. https://doi.org/10.1016/j.scitotenv.2020.137331

    Article  CAS  PubMed  Google Scholar 

  12. Hu S, Fang BL, Huang Z, Chen Y, Liu DF, Xing KY, Peng J, Lai WH (2019) Using molecular descriptors for assisted screening of heterologous competitive antigens to improve the sensitivity of ELISA for detection of enrofloxacin in raw milk. J Dairy Sci 102:6037–6046. https://doi.org/10.3168/jds.2018-16048

    Article  CAS  PubMed  Google Scholar 

  13. Terrado-Campos D, Tayeb-Cherif K, Peris-Vicente J, Carda-Broch S, Esteve-Romero J (2017) Determination of oxolinic acid, danofloxacin, ciprofloxacin, and enrofloxacin in porcine and bovine meat by micellar liquid chromatography with fluorescence detection. Food Chem 221:1277–1284. https://doi.org/10.1016/j.foodchem.2016.11.029

    Article  CAS  PubMed  Google Scholar 

  14. Ye YL, Ji J, Sun ZY, Shen PL, Sun XL (2020) Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff. TrAC- Trend Anal Chem 122:115718. https://doi.org/10.1016/j.trac.2019.115718

    Article  CAS  Google Scholar 

  15. Arduini F, Cinti S, Scognamiglio V, Moscone D, Palleschi G (2017) How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review, Anal Chim Acta 959:15–42. https://doi.org/10.1016/j.aca.2016.12.035

    Article  CAS  Google Scholar 

  16. Akhoundian M, Alizadeh T, Ganjali MR, Norouzi P (2019) Ultra-trace detection of methamphetamine in biological samples using FFT-square wave voltammetry and nano-sized imprinted polymer/MWCNTs-modified electrode. Talanta 20:115–123. https://doi.org/10.1016/j.talanta.2019.02.027

    Article  CAS  Google Scholar 

  17. Wang YY, Han M, Ye XX, Wu KB, Wu T, Li CY (2016) Voltammetric myoglobin sensor based on a glassy carbon electrode modified with a composite film consisting of carbon nanotubes and a molecularly imprinted polymerized ionic liquid. Microchim Acta 184:1–8. https://doi.org/10.1007/s00604-016-2005-2

    Article  CAS  Google Scholar 

  18. Diouf A, El Bari N, Bouchikhi B (2020) A novel electrochemical sensor based on ion imprinted polymer and gold nanomaterials for nitrite ion analysis in exhaled breath condensate. Talanta 209:120577. https://doi.org/10.1016/j.talanta.2019.120577

    Article  CAS  PubMed  Google Scholar 

  19. Sipa K, Brycht M, Borgul P, Poltorak L (2020) Electrochemical sensing of fluoroquinolone antibiotics. TrAC-Trend Anal Chem 128:115907. https://doi.org/10.1016/j.trac.2020.115907

    Article  CAS  Google Scholar 

  20. Rudnicki K, Poltorak L, Skrzypek S, Skrzypek S (2019) Ion transfer voltammetry for analytical screening of fluoroquinolone antibiotics at the water – 1.2-dichloroethane interface. Anal Chim Acta 1085:75–84. https://doi.org/10.1016/j.aca.2019.07.065

    Article  CAS  PubMed  Google Scholar 

  21. Aymard C, Kanso H, Serrano MJ, Pagan R, Noguer T, Istamboulie G (2022) Development of a new dual electrochemical immunosensor for a rapid and sensitive detection of enrofloxacin in meat samples. Food Chem 370:131016. https://doi.org/10.1016/j.foodchem.2021.131016

    Article  CAS  PubMed  Google Scholar 

  22. Goncalves DA, Carmo JS, Zanon LTS, Marangoni BS, Cena C, Camara GA, Donati GL, Trindade MAG (2022) Simultaneous quantification of seven multi-class organic molecules by single-shot dilution differential pulse voltammetric calibration. Talanta 237:122975. https://doi.org/10.1016/j.talanta.2021.122975

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Chen J, He X, Wang Z, Wu D, Zheng X, Zheng L, Wang B (2019) Simultaneous determination of neonicotinoids and fipronil and its metabolites in environmental water from coastal bay using disk-based solid-phase extraction and high-performance liquid chromatography–tandem mass spectrometry. Chemosphere 234:224–231. https://doi.org/10.1016/j.chemosphere.2019.05.243

    Article  CAS  PubMed  Google Scholar 

  24. He XP, Mei XQ, Wang JT, Lian ZR, Tan LJ, Wu W (2016) Determination of diethylstilbestrol in seawater by molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography. Mar Pollut Bull 102:142–147. https://doi.org/10.1016/j.marpolbul.2015.11.041

    Article  CAS  PubMed  Google Scholar 

  25. Martins RO, Gomes IC, Mendonça Telles AD, Kato L, Souza PS, Chaves AR (2020) Molecularly imprinted polymer as solid phase extraction phase for condensed tannin determination from Brazilian natural sources. J Chromatogra A 1620:460977. https://doi.org/10.1016/j.chroma.2020.460977

    Article  CAS  Google Scholar 

  26. Chen JL, Wang JT, Tan LJ (2019) Highly selective separation and detection of cyromazine from seawater using graphene oxide based molecularly imprinted solid-phase extraction. J Sep Sci 42:2100–2106. https://doi.org/10.1002/jssc.201900232

    Article  CAS  PubMed  Google Scholar 

  27. Huang Z, He J, Li H, Zhang M, Wang H, Zhang Y, Li Y, You L, Zhang S (2020) Synthesis and application of magnetic-surfaced pseudo molecularly imprinted polymers for zearalenone pretreatment in cereal samples. Food Chem 308:125696. https://doi.org/10.1016/j.foodchem.2019.125696

    Article  CAS  PubMed  Google Scholar 

  28. Zhou T, Ding L, Che G, Jiang W, Sang L (2019) Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: preparation and application in sample pretreatment. TrAC-Trend Anal Chem 114:11–28. https://doi.org/10.1016/j.trac.2019.02.028

    Article  CAS  Google Scholar 

  29. Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G (2019) Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 88:1–129. https://doi.org/10.1016/j.progpolymsci.2018.08.001

    Article  CAS  Google Scholar 

  30. Sun S, Chen L, Shi H, Li Y, He X (2014) Magnetic glass carbon electrode, modified with magnetic ferriferrous oxide nanoparticles coated with molecularly imprinted polymer films for electrochemical determination of bovine hemoglobin. J Electroanal Chem 734:18–24. https://doi.org/10.1016/j.jelechem.2014.09.034

    Article  CAS  Google Scholar 

  31. Anirudhan TS, Deepa JR, Stanly N (2019) Fabrication of a molecularly imprinted silylated graphene oxide polymer for sensing and quantification of creatinine in blood and urine samples. Appl Surf Sci 466:28–39. https://doi.org/10.1016/j.apsusc.2018.10.001

    Article  CAS  Google Scholar 

  32. Zuo P, Gao J, Peng J, Liu J, Zhao M, Zhao J, Zuo P, He H (2016) A sol-gel based molecular imprint incorporating carbon dots for fluorometric determination of nicotinic acid. Microchim Acta 183:329–336. https://doi.org/10.1007/s00604-015-1630-5

    Article  CAS  Google Scholar 

  33. Arabi M, Ostovan A, Bagheri AR, Guo X, Li J, Ma J, Chen L (2020) Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: a green approach and hazardous waste elimination. Talanta 215:120933. https://doi.org/10.1016/j.talanta.2020.120933

    Article  CAS  PubMed  Google Scholar 

  34. Liao S, Zhang W, Long W, Hou D, Yang X, Tan N (2016) Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol–gel surface imprinting technology. Appl Surf Sci 364:579–588. https://doi.org/10.1016/j.apsusc.2015.12.184

    Article  CAS  Google Scholar 

  35. Rezaei B, Boroujeni MK, Ensafi AA (2014) A novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@sol-gel@gold nanoparticles/pencil graphite electrode. Electrochim Acta 123:332–339. https://doi.org/10.1016/j.electacta.2014.01.056

    Article  CAS  Google Scholar 

  36. Yücebaş BB, YamanYT BG, Özgür E, Uzun L, Abaci S (2020) Molecular imprinted polymer based electrochemical sensor for selective detection of paraben. Sensor Actuat B-Chem 305:127368. https://doi.org/10.1016/j.snb.2019.127368

    Article  CAS  Google Scholar 

  37. Xu Z, Jiang X, Liu S, Yang M (2020) Sensitive and selective molecularly imprinted electrochemical sensor based on multi-walled carbon nanotubes for doxycycline hyclate determination. Chinese Chem Lett 31:185–188. https://doi.org/10.1016/j.cclet.2019.04.026

    Article  CAS  Google Scholar 

  38. Jerome R, Sundramoorthy AK (2020) Preparation of hexagonal boron nitride doped graphene film modified sensor for selective electrochemical detection of nicotine in tobacco sample. Anal Chim Acta 1132:110–120. https://doi.org/10.1016/j.aca.2020.07.060

    Article  CAS  PubMed  Google Scholar 

  39. Mathieu-Scheers E, Bouden S, Grillot C, Nicolle J, Warmont F, Bertagna V, Cagnon B, Vautrin-Ul C (2019) Trace anthracene electrochemical detection based on electropolymerized-molecularly imprinted polypyrrole modified glassy carbon electrode. J Electroanal Chem 848:113253. https://doi.org/10.1016/j.jelechem.2019.113253

    Article  CAS  Google Scholar 

  40. Liu XY, Ren J, Su LH, Gao X, Tang YW, Ma T, Zhu LJ, Li JR (2017) Novel hybrid probe based on double recognition of aptamer-molecularly imprinted polymer grafted on upconversion nanoparticles for enrofloxacin sensing. Biosens Bioelectron 87:203–208. https://doi.org/10.1016/j.bios.2016.08.051

    Article  CAS  PubMed  Google Scholar 

  41. Zhang ZZ, Liu Q, Zhang M, You FH, Hao N, Ding CF, Wang K (2021) Simultaneous detection of enrofloxacin and ciprofloxacin in milk using a bias potentials controlling-based photoelectrochemical aptasensor. J Hazard Mater 416:125988. https://doi.org/10.1016/j.jhazmat.2021.125988

    Article  CAS  PubMed  Google Scholar 

  42. Dong X, Li ZX, Sun XJ, Xing LH, Peng JX, Song CH (2017) Simultaneous determination of seventeen quinolones in aquaculture seawater using solid-phase extraction and liquid chromatography tandem mass spectrometry. Progress In Fishery Sciences 38:127–138. https://doi.org/10.11758/yykxjz.20160905001

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China [grant number 2019YFC140027-02, 2016YFC1402101], the National Natural Science Foundation of China [grant number 41876078], and The Postdoctoral Innovative Talents Support Program of Shandong Province [grant number SDBX2020015].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keming Qu or Jiangtao Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2033 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Tan, L., Qu, K. et al. Novel electrochemical sensor modified with molecularly imprinted polymers for determination of enrofloxacin in marine environment. Microchim Acta 189, 95 (2022). https://doi.org/10.1007/s00604-022-05205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05205-9

Keywords

Navigation