Skip to main content
Log in

Synthesis of a cerium-based nanomaterial with superior oxidase-like activity for colorimetric determination of glutathione in food samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Enzyme-like nanomaterials have received significant attention for their high stability and low cost. However, most nanomaterials require complicated synthesis processes, limiting the range of their potential applications. In this study, a novel cerium-based nanomaterial was fabricated in a facile manner from a mixture of dipicolinic acid (DPA), guanosine 5′-monophosphate (GMP), and cerium acetate under ambient conditions. The obtained nanomaterial, designated as DPA–Ce–GMP, exhibited superior oxidase-like activity owing to the mixed valence (Ce3+/Ce4+) of cerium ions. DPA–Ce–GMP efficiently catalyzed the oxidation of 3,3,5,5-tetramethylbenzidine (TMB), achieving a color reaction without requiring hydrogen peroxide. Thus, DPA–Ce–GMP was incorporated into a simple, rapid, and sensitive colorimetric sensor for glutathione (GSH) detection. Within this sensor, TMB oxidation is inhibited by the reducibility of GSH. The sensor exhibits a linear response over two concentration ranges (0.05–10 and 10–40 μM), and its detection limit is 17.1 nM (3σ/slope). The proposed sensor was successfully applied to GSH quantification in food samples. The developed sensor provides an efficient biomimic oxidase for GSH detection in real samples.

Graphical abstract

Facile approach to prepare cerium-based nanomaterial with superior oxidase-like activity for colorimetric detection of glutathione in food samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang W, Yang X, Zhu L, Chu H, Li X, Xu W (2021) Nanozymes: activity origin, catalytic mechanism, and biological application. Coord Chem Rev 448:214170. https://doi.org/10.1016/j.ccr.2021.214170

    Article  CAS  Google Scholar 

  2. Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H (2021) Advances in metal–organic framework-based nanozymes and their applications. Coord Chem Rev 449:214216. https://doi.org/10.1016/j.ccr.2021.214216

    Article  CAS  Google Scholar 

  3. Mei L, Zhu S, Liu Y, Yin W, Gu Z, Zhao Y (2021) An overview of the use of nanozymes in antibacterial applications. Chem Eng J 418:129431. https://doi.org/10.1016/j.cej.2021.129431

    Article  CAS  Google Scholar 

  4. Tang Y, Huang X, Wang X, Wang C, Tao H, Wu Y (2022) G-quadruplex DNAzyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods. Food Chem 366:130560. https://doi.org/10.1016/j.foodchem.2021.130560

    Article  CAS  PubMed  Google Scholar 

  5. Teng L, Han X, Liu Y, Lu C, Yin B, Huan S et al (2021) Smart nanozyme platform with activity-correlated ratiometric molecular imaging for predicating therapeutic effect. Angew Chem Int Ed Engl 10427. https://doi.org/10.1002/anie.202110427

  6. Tang Y, Hu Y, Zhou P, Wang C, Tao H, Wu Y (2021) Colorimetric detection of kanamycin residue in foods based on the aptamer-enhanced peroxidase-mimicking activity of layered WS2 nanosheets. J Agric Food Chem 69:2884–2893. https://doi.org/10.1021/acs.jafc.1c00925

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Liu Y, Gopalakrishnan S, Castellanos-Garcia L, Li G, Malassine M et al (2020) Intracellular activation of bioorthogonal nanozymes through endosomal proteolysis of the protein corona. ACS Nano 14:4767–4773. https://doi.org/10.1021/acsnano.0c00629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Samadi A, Xie M, Li J, Shon H, Zheng C, Zhao S (2021) Polyaniline-based adsorbents for aqueous pollutants removal: A review. Chem Eng J 418:129425. https://doi.org/10.1016/j.cej.2021.129425

    Article  CAS  Google Scholar 

  9. Masud MK, Yadav S, Islam MN, Nguyen NT, Salomon C, Kline R et al (2017) Gold-loaded nanoporous ferric oxide nanocubes with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of autoantibody. Anal Chem 89:11005–11013. https://doi.org/10.1021/acs.analchem.7b02880

    Article  CAS  PubMed  Google Scholar 

  10. Lian J, Liu P, Jin C, Shi Z, Luo X, Liu Q (2019) Perylene diimide-functionalized CeO2 nanocomposite as a peroxidase mimic for colorimetric determination of hydrogen peroxide and glutathione. Microchim Acta 186:332. https://doi.org/10.1007/s00604-019-3439-0

    Article  CAS  Google Scholar 

  11. Xue L, Jin N, Guo R, Wang S, Qi W, Liu Y et al (2021) Microfluidic colorimetric biosensors based on MnO2 nanozymes and convergence-divergence spiral micromixers for rapid and sensitive detection of salmonella. ACS Sens 6:2883–2892. https://doi.org/10.1021/acssensors.1c00292

    Article  CAS  PubMed  Google Scholar 

  12. Liu J, Ma Y, Zhang L, Zheng Y, Zhang R, Zhang L et al (2021) A versatile ligand-assisted cooperative template method to synthesize multi-shelled mesoporous hollow metal hydroxide and oxide nanospheres as catalytic reactors. Nano Res 14:3260–3266. https://doi.org/10.1007/s12274-021-3403-2

    Article  CAS  Google Scholar 

  13. Magri A, Petriccione M, Gutierrez TJ (2021) Metal-organic frameworks for food applications: a review. Food Chem 354:129533. https://doi.org/10.1016/j.foodchem.2021.129533

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Zhang M, Wei K, Zhao Y, Nie H, Ma Y et al (2021) Pyrrolic nitrogen dominated the carbon dot mimic oxidase activity. Carbon 179:692–700. https://doi.org/10.1016/j.carbon.2021.04.061

    Article  CAS  Google Scholar 

  15. Karakoti A, Singh S, Dowding JM, Seal S, Self WT (2010) Redox-active radical scavenging nanomaterials. Chem Soc Rev 39:4422–4432. https://doi.org/10.1039/b919677n

    Article  CAS  PubMed  Google Scholar 

  16. Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G et al (2012) Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 6:3767–3775. https://doi.org/10.1021/nn2048069

    Article  CAS  PubMed  Google Scholar 

  17. Zheng XL, Liu Y, Pan M, Lu XQ, Zhang JY, Zhao CY et al (2007) Bright blue-emitting Ce3+ complexes with encapsulating polybenzimidazole tripodal ligands as potential electroluminescent devices. Angew Chem Int Ed Engl 46:7399–7403. https://doi.org/10.1002/anie.200702401

    Article  CAS  PubMed  Google Scholar 

  18. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105. https://doi.org/10.1021/ar400250z

    Article  CAS  PubMed  Google Scholar 

  19. Yang JL, Li YJ, Yuan YH, Liang RP, Qiu JD (2018) Target induced aggregation of Ce(III)-based coordination polymer nanoparticles for fluorimetric detection of As(III). Talanta 190:255–262. https://doi.org/10.1016/j.talanta.2018.07.040

    Article  CAS  PubMed  Google Scholar 

  20. Wang T, Mei Q, Tao Z, Wu H, Zhao M, Wang S et al (2020) A smartphone-integrated ratiometric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline. Biosens Bioelectron 148:111791. https://doi.org/10.1016/j.bios.2019.111791

    Article  CAS  PubMed  Google Scholar 

  21. Wang T, Tao Z, Qu C, Wang S, Liu Y (2021) A cerium-based fluorescent nanosensor for highly specific detection of glutathione over cysteine and homocysteine. Analyst 146:283–288. https://doi.org/10.1039/d0an01740j

    Article  CAS  PubMed  Google Scholar 

  22. Perk B, Büyüksünetçi YT, Hakli Ö, Xue C, Li Q, Anik Ü (2021) Centri-voltammetric GSH detection with PDI-C4SH as a carrier material. ChemistrySelect 6:11648–11652. https://doi.org/10.1002/slct.202103140

    Article  CAS  Google Scholar 

  23. Çubukçu M, Ertaş FN, Anık Ü (2013) Centri-voltammetric determination of glutathione. Microchim Acta 180:93–100. https://doi.org/10.1007/s00604-012-0910-6

    Article  CAS  Google Scholar 

  24. Hu Q, Sun H, Zhou X, Gong X, Xiao L, Liu L et al (2020) Bright-yellow-emissive nitrogen-doped carbon nanodots as a fluorescent nanoprobe for the straightforward detection of glutathione in food samples. Food Chem 325:126946. https://doi.org/10.1016/j.foodchem.2020.126946

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Zhang L, Zhang Z, Liu Y, Chen J, Liu J et al (2021) MnO2 nanospheres assisted by cysteine combined with MnO2 nanosheets as a fluorescence resonance energy transfer system for “switch-on" detection of glutathione. Anal Chem 93:9621–9627. https://doi.org/10.1021/acs.analchem.1c01787

    Article  CAS  PubMed  Google Scholar 

  26. Guo D, Li C, Liu G, Luo X, Wu F (2021) Oxidase mimetic activity of a metalloporphyrin-containing porous organic polymer and its applications for colorimetric detection of both ascorbic acid and glutathione. ACS Sustain Chem Eng 9:5412–5421. https://doi.org/10.1021/acssuschemeng.1c00419

    Article  CAS  Google Scholar 

  27. Anik Ü, Cubukcu M, Ertaş FN (2016) An effective electrochemical biosensing platform for the detection of reduced glutathione. Artif Cell Nanomed B 44:971–977. https://doi.org/10.3109/21691401.2015.1008504

    Article  CAS  Google Scholar 

  28. Li Y, Jiang L, Zou Y, Song Z, Jin S (2021) Highly reproducible SERS sensor based on self-assembled Au nanocubic monolayer film for sensitive and quantitative detection of glutathione. Appl Surf Sci 540:148381. https://doi.org/10.1016/j.apsusc.2020.148381

    Article  CAS  Google Scholar 

  29. Li S, Muhammad I, Yu H, Sun X, Zhang X (2019) Detection of aflatoxin adducts as potential markers and the role of curcumin in alleviating AFB1-induced liver damage in chickens. Ecotox Environ Safe 176:137–145. https://doi.org/10.1016/j.ecoenv.2019.03.089

    Article  CAS  Google Scholar 

  30. Gao N, Zhang Y, Huang P, Xiang Z, Wu FY, Mao L (2018) Perturbing tandem energy transfer in luminescent heterobinuclear lanthanide coordination polymer nanoparticles enables real-time monitoring of release of the anthrax biomarker from bacterial spores. Anal Chem 90:7004–7011. https://doi.org/10.1021/acs.analchem.8b01365

    Article  CAS  PubMed  Google Scholar 

  31. Wang FY, Hu X, Hu J, Peng QQ, Zheng BZ, Du J et al (2018) Fluorescence assay for alkaline phosphatase activity based on energy transfer from terbium to europium in lanthanide coordination polymer nanoparticles. J Mater Chem B 6:6008–6015. https://doi.org/10.1039/c8tb01713a

    Article  CAS  PubMed  Google Scholar 

  32. Zhao J, Wang S, Lu S, Sun J, Yang X (2018) A luminescent europium-dipicolinic acid nanohybrid for the rapid and selective sensing of pyrophosphate and alkaline phosphatase activity. Nanoscale 10:7163–7170. https://doi.org/10.1039/c8nr00223a

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Wang Y, Chai R, Xu Y, Li H, Liu B (2017) Luminescent lanthanide-based organic/inorganic hybrid materials for discrimination of glutathione in solution and within hydrogels. ACS Appl Mater Inter 9:13554–13563. https://doi.org/10.1021/acsami.7b02679

    Article  CAS  Google Scholar 

  34. Xiong Y, Chen S, Ye F, Su L, Zhang C, Shen S et al (2015) Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem Commun (Camb) 51:4635–4638. https://doi.org/10.1039/c4cc10346g

    Article  CAS  Google Scholar 

  35. Zhang J, Huang H, Pan S, Liu H, Hu X (2021) A novel “off-on-off” fluorescent-nanoprobe based on B, N co-doped carbon dots and MnO2 nanosheets for sensitive detection of GSH and Ag+. Spectrochim Acta A 244:118831. https://doi.org/10.1016/j.saa.2020.118831

    Article  CAS  Google Scholar 

  36. Yan F, Ye Q, Xu J, He J, Chen L, Zhou X (2017) Carbon dots-bromoacetyl bromide conjugates as fluorescence probe for the detection of glutathione over cysteine and homocysteine. Sens Actuators B Chem 251:753–762. https://doi.org/10.1016/j.snb.2017.05.050

    Article  CAS  Google Scholar 

  37. Zhu Y, Wu J, Wang K, Xu H, Qu M, Gao Z et al (2021) Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy. Talanta 224:121852. https://doi.org/10.1016/j.talanta.2020.121852

    Article  CAS  PubMed  Google Scholar 

  38. Liu T, Zhou M, Pu Y, Liu L, Li F, Li M, Zhang M (2021) Silver nanoparticle-functionalized 3D flower-like copper (II)-porphyrin framework nanocomposites as signal enhancers for fabricating a sensitive glutathione electrochemical sensor. Sens Actuators B Chem 342:130047. https://doi.org/10.1016/j.snb.2021.130047

    Article  CAS  Google Scholar 

  39. Yuan B, Xu C, Zhang R, Lv D, Li S, Zhang D et al (2017) Glassy carbon electrode modified with 7, 7, 8, 8-tetracyanoquinodimethane and graphene oxide triggered a synergistic effect: Low-potential amperometric detection of reduced glutathione. Biosens Bioelectron 96:1–7. https://doi.org/10.1016/j.bios.2017.04.026

    Article  CAS  PubMed  Google Scholar 

  40. Tang M, Zhu WY, Wu H, Chai F, Qu F (2019) Nitrogen-and sulfur-doped carbon dots as peroxidase mimetics: colorimetric determination of hydrogen peroxide and glutathione, and fluorimetric determination of lead (II). Microchim Acta 186:604. https://doi.org/10.1007/s00604-019-3710-4

    Article  CAS  Google Scholar 

  41. Huang M, Wang H, He D, Jiang P, Zhang Y (2019) Ultrafine and monodispersed iridium nanoparticles supported on nitrogen-functionalized carbon: an efficient oxidase mimic for glutathione colorimetric detection. Chem Commun (Camb) 55:3634–3637. https://doi.org/10.1039/c9cc00279k

    Article  CAS  Google Scholar 

  42. Wang S, Wang M, Liu Y, Meng X, Ye Y, Song X et al (2021) Novel D-π-A conjugated microporous polymer as visible light-driven oxidase mimic for efficient colorimetric detection of glutathione. Sensors Actuators B: Chem 326:128808. https://doi.org/10.1016/j.snb.2020.128808

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 32172298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianqing Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 984 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Hu, Y., Liang, M. et al. Synthesis of a cerium-based nanomaterial with superior oxidase-like activity for colorimetric determination of glutathione in food samples. Microchim Acta 189, 132 (2022). https://doi.org/10.1007/s00604-022-05197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05197-6

Keywords

Navigation