Skip to main content
Log in

A novel colorimetric aptasensor for sensitive tetracycline detection based on the peroxidase-like activity of Fe3O4@Cu nanoparticles and “sandwich” oligonucleotide hybridization

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel colorimetric aptasensor has been developed for highly sensitive tetracycline (TC) detection based on the peroxidase-like activity of Fe3O4@Cu nanoparticles and “sandwich” oligonucleotide hybridization. The Fe3O4@Cu nanoparticles with high peroxidase-like activity were successfully synthesized under mild conditions. Then, a “sandwich” oligonucleotide hybridization probe (a short amino-modified complementary sequence of a portion of the TC aptamer (cDNA1), TC aptamers, and a long complementary to 5′ terminal TC aptamer sequence (cDNA2)) was created in 96-wells plates via DNA hybridization in the absence of TC from the detection system. The unique “sandwich” oligonucleotide hybridization probe adsorbed large numbers of Fe3O4@Cu nanozymes while further enhancing its peroxidase-like activity. Based on the 3,3′,5,5′-tetramethylbenzidine (TMB)-hydrogen peroxide (H2O2) reporting system, the blue color of the solution decreased linearly with the increase of TC concentration, ranging from 10−3 to 103 μg/L with an ultralow limit of detection (LOD) of 0.91 ng/L (2 pM). The proposed method was successfully applied to detect TC in spiked milk samples, with recoveries of 81.8 to 112%, demonstrating the excellent potential for highly sensitive TC detection in milk.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Y, Yao L, Ning G, Wu Y, Wu S, Mao S et al (2019) An electrochemical strategy for tetracycline detection coupled triple helix aptamer probe with catalyzed hairpin assembly signal amplification. Biosens Bioelectron 143:111613

    Article  CAS  Google Scholar 

  2. Perez-Rodriguez M, Pellerano RG, Pezza L, Pezza HR (2018) An overview of the main foodstuff sample preparation technologies for tetracycline residue determination. Talanta 182:1–21

    Article  CAS  Google Scholar 

  3. Tumini M, Nagel OG, Althaus RL (2015) Microbiological bioassay using Bacillus pumilus to detect tetracycline in milk. J Dairy Res 82:248–255

    Article  CAS  Google Scholar 

  4. Lai X, Liu J, Xu X, Li J, Zhang B, Wei L et al (2020) Ultrasensitive high-performance liquid chromatography determination of tetracycline antibiotics and their 4-epimer derivatives based on dual effect of methanesulfonic acid. J Sep Sci 43:398–405

    Article  CAS  Google Scholar 

  5. Tasci F, Canbay HS, Doganturk M (2021) Determination of antibiotics and their metabolites in milk by liquid chromatography-tandem mass spectrometry method. Food Control 127:108147

    Article  CAS  Google Scholar 

  6. Hu Y, Su L, Wang S, Guo Z, Hu Y, Xie H (2019) A ratiometric electrochemiluminescent tetracycline assay based on the combined use of carbon nanodots, Ru(bpy)(3)(2+), and magnetic solid phase microextraction. Microchim Acta 186:512

    Article  Google Scholar 

  7. Zhao N, Wang Y, Hou S, Zhao L (2020) Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging. Microchim Acta 187:351

    Article  CAS  Google Scholar 

  8. Gong X, Li X, Qing T, Zhang P, Feng B (2019) Amplified colorimetric detection of tetracycline based on an enzyme-linked aptamer assay with multivalent HRP-mimicking DNAzyme. Analyst 144:1948–1954

    Article  CAS  Google Scholar 

  9. Wang L, Hao L, Qi W, Huo X, Xue L, Liu Y et al (2020) A sensitive Salmonella biosensor using platinum nanoparticle loaded manganese dioxide nanoflowers and thin-film pressure detector. Sensor Actuat B-Chem 321:128616

    Article  CAS  Google Scholar 

  10. Zhang Z, Tian Y, Huang P, Wu F (2020) Using target-specific aptamers to enhance the peroxidase-like activity of gold nanoclusters for colorimetric detection of tetracycline antibiotics. Talanta 208:120342

    Article  CAS  Google Scholar 

  11. Sheng Y, Liang J, Xie J (2020) Indirect competitive determination of tetracycline residue in honey using an ultrasensitive gold-nanoparticle-linked aptamer assay. Molecules 25:2144

    Article  CAS  Google Scholar 

  12. Peng X, Wan G, Wu L, Zeng M, Lin S, Wang G (2018) Peroxidase-like activity of Au@TiO2 yolk-shell nanostructure and its application for colorimetric detection of H2O2 and glucose. Sensor Actuat B-Chem 257:166–177

    Article  CAS  Google Scholar 

  13. Wang L, Huo X, Zheng L, Cai G, Wang Y, Liu N et al (2020) An ultrasensitive biosensor for colorimetric detection of Salmonella in large-volume sample using magnetic grid separation and platinum loaded zeolitic imidazolate Framework-8 nanocatalysts. Biosens Bioelectron 150:111862

    Article  CAS  Google Scholar 

  14. Wang C, Qian J, Wang K, Yang X, Liu Q, Hao N et al (2016) Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron 77:1183–1191

    Article  CAS  Google Scholar 

  15. Song SH, Gao ZF, Guo X, Chen GH (2019) Aptamer-based detection methodology studies in food safety. Food Anal Method 12:966–990

    Article  Google Scholar 

  16. Mehlhorn A, Rahimi P, Joseph Y (2018) Aptamer-based biosensors for antibiotic detection: a review. Biosensors (Basel) 8:54

    Article  CAS  Google Scholar 

  17. Lopez A, Zhang Y, Liu J (2017) Tuning DNA adsorption affinity and density on metal oxide and phosphate for improved arsenate detection. J Colloid Interf Sci 493:249–256

    Article  CAS  Google Scholar 

  18. Liu B, Liu J (2015) Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 7:13831–13835

    Article  CAS  Google Scholar 

  19. Wang S, Yong W, Liu J, Zhang L, Chen Q, Dong Y (2014) Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey. Biosens Bioelectron 57:192–198

    Article  CAS  Google Scholar 

  20. Dong Y, Wen B, Chen Y, Cao P, Zhang C (2016) Autoclave-free facile approach to the synthesis of highly tunable nanocrystal clusters for magnetic responsive photonic crystals. RSC Adv 6:64434–64440

    Article  CAS  Google Scholar 

  21. Wang L, Huo X, Qi W, Xia Z, Li Y, Lin J (2020) Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta 211:120715

    Article  CAS  Google Scholar 

  22. Sun J, Yu G, Liu L, Li Z, Kan Q, Huo Q et al (2014) Core–shell structured Fe3O4@SiO2 supported cobalt(ii) or copper(ii) acetylacetonate complexes: magnetically recoverable nanocatalysts for aerobic epoxidation of styrene. Catal Sci Technol 4:1246–1252

    Article  CAS  Google Scholar 

  23. Beevi MH, Vignesh S, Pandiyarajan T, Jegatheesan P, James RA, Giridharan NV et al (2012) Synthesis and antifungal studies on CuO nanostructures. Adv Mater Res 488–489:666–670

    Article  Google Scholar 

  24. Tang Y, Hu Y, Zhou P, Wang C, Tao H, Wu Y (2021) Colorimetric detection of kanamycin residue in foods based on the aptamer-enhanced peroxidase-mimicking activity of layered WS2 nanosheets. J Agr Food Chem 69:2884–2893

    Article  CAS  Google Scholar 

  25. Zhao L, Wang J, Su D, Zhang Y, Lu H, Yan X et al (2020) The DNA controllable peroxidase mimetic activity of MoS2 nanosheets for constructing robust colorimetric biosensor. Nanoscale 12:19420–19428

    Article  CAS  Google Scholar 

  26. Jiao A, Xu L, Tian Y, Cui Q, Liu X, Chen M (2021) Cu2O nanocubes-grafted highly dense Au nanoparticles with modulated electronic structures for improving peroxidase catalytic performances. Talanta 225:121990

    Article  CAS  Google Scholar 

  27. Darabdhara G, Sharma B, Das MR, Boukherroub R, Szunerits S (2017) Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection. Sensor Actuat B-Chem 238:842–851

    Article  CAS  Google Scholar 

  28. Pautler R, Kelly EY, Huang PJ, Cao J, Liu B, Liu J (2013) Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching. ACS Appl Mater Inter 5:6820–6825

    Article  CAS  Google Scholar 

  29. Nakamura F, & Hara M (2005) The Length effect of probe DNA for hybridization using DNA self-assembled monolayer. e-Journal Surf Sci Nanotechnol 3: 250–253.

  30. Wang K, Lin K, Huang X, Chen M (2017) A simple and fast extraction method for the determination of multiclass antibiotics in eggs using LC-MS/MS. J Agr Food Chem 65:5064–5073

    Article  CAS  Google Scholar 

  31. Saleh H, Elhenawee M, Hussien EM, Ahmed N, Ibrahim AE (2021) Validation of HPLC-UV multi-residue method for the simultaneous determination of tetracycline, oxytetracycline, spiramycin and neospiramycin in raw milk. Food Anal Method 14:36–43

    Article  Google Scholar 

  32. Zhu X, Gao L, Tang L, Peng B, Huang H, Wang J et al (2019) Ultrathin PtNi nanozyme based self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection. Biosens Bioelectron 146:111756

    Article  Google Scholar 

  33. Yao S, Li J, Pang Bo, Wang X, Shi Y, Song X et al (2020) Colorimetric immunoassay for rapid detection of Staphylococcus aureus based on etching-enhanced peroxidase-like catalytic activity of gold nanoparticles. Microchim Acta 187:504

    Article  CAS  Google Scholar 

  34. Song Y, Qiao J, Liu W, Qi L (2020) Enhancement of gold nanoclusters-based peroxidase nanozymes for detection of tetracycline. Microchem J 157:104871

    Article  CAS  Google Scholar 

  35. Hu L, Yuan Y, Zhang L, Zhao J, Majeed S, Xu G (2013) Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta 762:83–86

    Article  CAS  Google Scholar 

  36. Wang Z, Chen M, Shu J, Li Y (2016) One-step solvothermal synthesis of Fe3O4@Cu@Cu2O nanocomposite as magnetically recyclable mimetic peroxidase. J Alloy Compd 682:432–440

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Chunhui Program Research Project of the Chinese Ministry of Education (192624), the National Nature Science Foundation of China (31801647), and the Sichuan Science and Technology Program (2020YFN0041, 2020YFN0151, 2020YFN0153).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yukun Huang or Xianggui Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1785 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhou, H., Wu, X. et al. A novel colorimetric aptasensor for sensitive tetracycline detection based on the peroxidase-like activity of Fe3O4@Cu nanoparticles and “sandwich” oligonucleotide hybridization. Microchim Acta 189, 86 (2022). https://doi.org/10.1007/s00604-022-05195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05195-8

Keywords

Navigation