Skip to main content
Log in

Electrochemical sensing of Staphylococcus aureus based on conductive anti-fouling interface

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A system for the rapid and ultra-sensitive detection of Staphylococcus aureus (S. aureus), a prevalent foodborne pathogen is introduced. Limitations of typical electrochemical sensing, often subjected to interference from non-specific protein adsorption are addressed. A dual-aptamer-based sandwich immunobiosensor is shown for its benefits regarding specificity and anti-fouling capacity, endowed by a sulfonated polyaniline layer combined with signal amplification via highly conductive gold nanoparticles. EIS spectra (Nyquist plots) were recorded at pH 7.4 PBS containing 5 mM Fe(CN)63−/Fe(CN)64−, in order to verify the possibility of the electrochemical sensing for detection of S. aureus. Results demonstrated that the constructed immunobiosensor presents an extended detection range (1 × 101 to 1 × 105 CFU/mL) and detection limit as low as 2 CFU/mL. The resistance values of the immunobiosensor developed  maintain at a stable value during 2 weeks.  Besides, the specificity of the system is highlighted by testing raw milk, and the results of which demonstrate the excellent prospects of the system for monitoring foodborne pathogens.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oliveira D, Borges A, Simoes M (2018) Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins 10:252

    Article  Google Scholar 

  2. Kamble E, Pardesi K (2021) Antibiotic tolerance in biofilm and stationary-phase. Microb Drug Resist 27:3–12

    Article  CAS  Google Scholar 

  3. Dmp DO, Forde BM, Kidd TJ et al (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33:e00181-e219

    Google Scholar 

  4. Cai RF, Zhang ZW, Chen HH et al (2021) A versatile signal-on electrochemical biosensor for Staphylococcus aureus based on triple-helix molecular switch. Sensor Actuat B-Chem 326:128842

    Article  CAS  Google Scholar 

  5. Andersson T, Blackberg A, Lood R et al (2020) Development of a molecular imprinting-based surface plasmon resonance biosensor for rapid and sensitive detection of Staphylococcus aureus alpha hemolysin from human serum. Front Cell Infect Microbiol. 10:571578

    Article  CAS  Google Scholar 

  6. Chen L, Leng YK, Lin B et al (2020) Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode-no core-singlemode coupler for Staphylococcus aureus detection. Sensor Actuat B-Chem 320:128283

    Article  CAS  Google Scholar 

  7. Yang Y, Zhang ZJ, Wan MH et al (2020) Highly sensitive surface-enhanced Raman spectroscopy substrates of Ag@PAN electrospinning nanofibrous membranes for direct detection of Bacteria. ACS Omega 5:19834–19843

    Article  CAS  Google Scholar 

  8. Alafeef M, Dighe K, Moitra P et al (2020) Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano 14:17028–17045

    Article  CAS  Google Scholar 

  9. Zhu PH, Li SS, Zhou S et al (2021) In situ grown COFs on 3D strutted graphene aerogel for electrochemical detection of NO released from living cells. Chem Eng J 420:127559

    Article  CAS  Google Scholar 

  10. Masdor NA, Altintas Z, Tothill IE (2016) Sensitive detection of campylobacter jejuni using nanoparticles enhanced QCM sensor. Biosens Bioelectron 78:328–336

    Article  CAS  Google Scholar 

  11. Yuan KS, Mei QS, Guo XJ et al (2018) Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood. Chem Sci 9:8781

    Article  CAS  Google Scholar 

  12. Li Y, Han R, Chen M et al (2021) Bovine serum albumin-cross-linked polyaniline nanowires for ultralow fouling and highly sensitive electrochemical protein quantification in human serum samples. Anal Chem 93:4326–4333

    Article  CAS  Google Scholar 

  13. Lin PH, Li BR (2020) Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 145:1110–1120

    Article  CAS  Google Scholar 

  14. Jiang C, Wang GX, Hein R et al (2020) Antifouling strategies for selective in vitro and in vivo sensing. Chem Rev 120:3852–3889

    Article  CAS  Google Scholar 

  15. Xu TT, Dai HQ, Jin YC (2020) Electrochemical sensing of lead(II) by differential pulse voltammetry using conductive polypyrrole nanoparticles. Microchim Acta 187:23

    Article  CAS  Google Scholar 

  16. Gospodinova N, Mokreva P, Terlemezyan L (1994) Influence of hydrolysis on the chemical polymerization of aniline. Polymer 35:3102–3106

    Article  CAS  Google Scholar 

  17. Lee CW, Wu JK, Chang CH et al (2020) Sulfonated polyaniline as zwitterionic and conductive interfaces for anti-biofouling on open electrode surfaces in electrodynamic systems. ACS Appl Mater Interfaces 12:19102–19109

    Article  CAS  Google Scholar 

  18. Coccia F, Tonucci L, Bosco D et al (2012) One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem. 14:1073

    Article  CAS  Google Scholar 

  19. Farzadfard A, Shayeh JS, Rezaei MH et al (2020) Modification of reduced graphene/Au-aptamer to develop an electrochemical based aptasensor for measurement of glycated albumin. Talanta 211:120722

    Article  CAS  Google Scholar 

  20. Wu ZQ, Chen XD, Zhu SB et al (2013) Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sensor Actuat B-Chem 178:485–493

    Article  CAS  Google Scholar 

  21. Deshmukh MA, Celiesiute R, Ramanaviciene A (2018) EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II)ions. Electrochim Acta 259:930–938

    Article  CAS  Google Scholar 

  22. Kallem P, Ibrahim Y, Hasan SW et al (2021) Fabrication of novel polyethersulfone (PES) hybrid ultrafiltration membranes with superior permeability and antifouling properties using environmentally friendly sulfonated functionalized polydopamine nanofillers. Sep Puri. Technol 261:118311

    Article  CAS  Google Scholar 

  23. Tiraferri A, Kang Y, Giannelis EP et al (2012) Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environ Sci Technol 20:11135–11144

    Article  Google Scholar 

  24. Puniredd SR, Jayaraman S, Gandhimathi C et al (2015) Deposition of zwitterionic polymer brushes in a dense gas medium. J Colloid Interf Sci 448:156–162

    Article  CAS  Google Scholar 

  25. Han E, Li X, Zhang Y et al (2020) Electrochemical immunosensor based on self-assembled gold nanorods for label-free and sensitive determination of Staphylococcus aureus. Anal Biochem 611:113982

    Article  CAS  Google Scholar 

  26. Yue H, Zhou YL, Wang PS et al (2016) A facile label-free electrochemiluminescent biosensor for specific detection of Staphylococcus aureus utilizing the binding between immunoglobulin G and protein A. Talanta 153:401–406

    Article  CAS  Google Scholar 

  27. Farooq U, Ullah MW, Yang QL et al (2020) High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosens Bioelectron. 157:112163

    Article  CAS  Google Scholar 

  28. Xu TT, Li JM, Zhang SY et al (2019) Integration of diagnosis and treatment in the detection and kill of S. aureus in the whole blood. Biosens Bioelectron 142:111507

    Article  CAS  Google Scholar 

  29. Patel D, Zhou Y, Ramasamyz RP (2021) A bacteriophage-based electrochemical biosensor for detection of methicillin-resistant Staphylococcus aureus. J Electrochem Soc 168:057523

Download references

Acknowledgements

This work was supported by the University Natural Science Research Project of Jiangsu Province (19KJB430026), the Foundation (GZKF202015) of State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Nanjing Forestry University 2018 Scientific Research Start-up Funds (163105042), and the financial support from China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Xu or Hongqi Dai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1667 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Xu, T., Zhou, J. et al. Electrochemical sensing of Staphylococcus aureus based on conductive anti-fouling interface. Microchim Acta 189, 97 (2022). https://doi.org/10.1007/s00604-022-05190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05190-z

Keywords

Navigation