Skip to main content
Log in

Separation and detection of E. coli O157:H7 using a SERS-based microfluidic immunosensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yu H, Neal JA, Sirsat SA (2018) Consumers’ food safety risk perceptions and willingness to pay for fresh-cut produce with lower risk of foodborne illness. Food Control 86:83–89. https://doi.org/10.1016/J.FOODCONT.2017.11.014

    Article  Google Scholar 

  2. FDA (1998) Guidance for industry: guide to minimize microbial food safety hazards for fresh fruits and vegetables | FDA. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-guide-minimize-microbial-food-safety-hazards-fresh-fruits-and-vegetables. Accessed 19 May 2021

  3. CDC (2021) Lettuce, other leafy greens, and food safety | Food Safety | CDC. https://www.cdc.gov/foodsafety/communication/leafy-greens.html. Accessed 27 Aug 2021

  4. Marshall KE, Hexemer A, Seelman SL et al (2020) Lessons learned from a decade of investigations of Shiga toxin-producing Escherichia coli outbreaks linked to leafy greens, United States and Canada. Emerg Infect Dis 26:2319–2328. https://doi.org/10.3201/eid2610.191418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. March S, Ratnam S (1986) Sorbitol-MacConkey medium for detection of Escherichia coli O157:H7 associated with hemorrhagic colitis. J Clin Microbiol 23:869–872. https://doi.org/10.1128/JCM.23.5.869-872.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao X, Lin C-W, Wang J, Oh DH (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24:297–312. https://doi.org/10.4014/JMB.1310.10013

    Article  CAS  PubMed  Google Scholar 

  7. Sharma H, Mutharasan R (2013) Review of biosensors for foodborne pathogens and toxins. Sensors Actuators B Chem 183:535–549. https://doi.org/10.1016/J.SNB.2013.03.137

    Article  CAS  Google Scholar 

  8. Saravanan A, Kumar PS, Hemavathy R V., et al (2020) Methods of detection of food-borne pathogens: a review. Environ Chem Lett 2020 191 19:189–207. https://doi.org/10.1007/S10311-020-01072-Z

  9. Deisingh AK, Thompson M (2004) Strategies for the detection of Escherichia coli O157:H7 in foods. J Appl Microbiol 96:419–429. https://doi.org/10.1111/J.1365-2672.2003.02170.X

    Article  CAS  PubMed  Google Scholar 

  10. López-Campos G, Martínez-Suárez J V., Aguado-Urda M, López-Alonso V (2012) Detection, identification, and analysis of foodborne pathogens. 13–32. https://doi.org/10.1007/978-1-4614-3250-0_2

  11. Seiichi S, Putalun W, Sornkanok V et al (2018) Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J Nat Med 72:32–42. https://doi.org/10.1007/S11418-017-1144-Z

    Article  Google Scholar 

  12. D’Lima CB, Suslow TV (2009) Comparative evaluation of practical functionality of rapid test format kits for detection of Escherichia coli O157:H7 on lettuce and leafy greens. J Food Prot 72:2461–2470. https://doi.org/10.4315/0362-028X-72.12.2461

    Article  PubMed  Google Scholar 

  13. Han XX, Cai LJ, Guo J et al (2008) Fluorescein isothiocyanate linked immunoabsorbent assay based on surface-enhanced resonance Raman scattering. Anal Chem 80:3020–3024. https://doi.org/10.1021/AC702497T

    Article  CAS  PubMed  Google Scholar 

  14. Asgari S, Sun L, Lin J et al (2020) Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Microchim Acta 187:1–11. https://doi.org/10.1007/s00604-020-04358-9

    Article  CAS  Google Scholar 

  15. Asgari S, Wu G, Aghvami SA et al (2021) Optimisation using the finite element method of a filter-based microfluidic SERS sensor for detection of multiple pesticides in strawberry. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess 38:646–658. https://doi.org/10.1080/19440049.2021.1881624

    Article  CAS  PubMed  Google Scholar 

  16. Jun BH, Kim JH, Park H et al (2007) Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay. J Comb Chem 9:237–244. https://doi.org/10.1021/cc0600831

    Article  CAS  PubMed  Google Scholar 

  17. Kamińska A, Witkowska E, Winkler K et al (2015) Detection of hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens Bioelectron 66:461–467. https://doi.org/10.1016/j.bios.2014.10.082

    Article  CAS  PubMed  Google Scholar 

  18. Lee S, Chon H, Yoon SY et al (2012) Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging. Nanoscale 4:124–129. https://doi.org/10.1039/c1nr11243k

    Article  CAS  PubMed  Google Scholar 

  19. Gao R, Cheng Z, deMello JA, Choo J (2016) Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab Chip 16:1022–1029. https://doi.org/10.1039/C5LC01249J

    Article  CAS  PubMed  Google Scholar 

  20. Bridle H, Miller B, Desmulliez MPY (2014) Application of microfluidics in waterborne pathogen monitoring: a review. Water Res 55:256–271. https://doi.org/10.1016/J.WATRES.2014.01.061

    Article  CAS  PubMed  Google Scholar 

  21. Lin H-Y, Huang C-H, Hsieh W-H et al (2014) On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. Small 10:4700–4710. https://doi.org/10.1002/SMLL.201401526

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y-J, Chen Y-Y, Wang K-H et al (2020) Integration of a thermoelectric heating unit with ionic wind-induced droplet centrifugation chip to develop miniaturized concentration device for rapid determination of salmonella on food samples using antibody-functionalized SERS tags. Sensors (Basel) 20:1–14. https://doi.org/10.3390/S20247177

    Article  CAS  Google Scholar 

  23. Wang C, Madiyar F, Yu C, Li J (2017) Detection of extremely low concentration waterborne pathogen using a multiplexing self-referencing SERS microfluidic biosensor. J Biol Eng 2017 111 11:1–11. https://doi.org/10.1186/S13036-017-0051-X

  24. Weng X, Zhang C, Jiang H (2021) Advances in microfluidic nanobiosensors for the detection of foodborne pathogens. LWT 151:112172. https://doi.org/10.1016/J.LWT.2021.112172

    Article  CAS  Google Scholar 

  25. Rodríguez-Lorenzo L, Garrido-Maestu A, Bhunia AK et al (2019) Gold nanostars for the detection of foodborne pathogens via surface-enhanced Raman scattering combined with microfluidics. ACS Appl Nano Mater 2:6081–6086. https://doi.org/10.1021/ACSANM.9B01223

    Article  Google Scholar 

  26. Xiong Z, Lin M, Lin H, Huang M (2018) Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice. Carbohydr Polym 189:79–86

    Article  CAS  Google Scholar 

  27. Bi L, Wang X, Cao X et al (2020) SERS-active Au@Ag core-shell nanorod (Au@AgNR) tags for ultrasensitive bacteria detection and antibiotic-susceptibility testing. Talanta 220:121397. https://doi.org/10.1016/J.TALANTA.2020.121397

    Article  CAS  PubMed  Google Scholar 

  28. Singh P, Mustapha A (2015) Multiplex real-time PCR assays for detection of eight Shiga toxin-producing Escherichia coli in food samples by melting curve analysis. Int J Food Microbiol 215:101–108. https://doi.org/10.1016/J.IJFOODMICRO.2015.08.022

    Article  CAS  PubMed  Google Scholar 

  29. FDA (2019) Guidelines for the validation of microbiological methods for the FDA foods program, 3rd editio

  30. Ijeh MO (2011) Covalent gold nanoparticle-antibody conjugates for sensivity improvement in LFIA. Doctoral dissertation, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky

  31. Hyre DE, Le Trong I, Merritt EA et al (2006) Cooperative hydrogen bond interactions in the streptavidin–biotin system. Protein Sci 15:459. https://doi.org/10.1110/PS.051970306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ghann W, Harris T, Kabir D, et al (2019) Lipoic acid decorated gold nanoparticles and their application in the detection of lead ions. J Nanomed Nanotechnol 10:. https://doi.org/10.35248/2157-7439.19.10.539

  33. Wang J, Wu X, Wang C et al (2016) Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl Mater Interfaces 8:19958–19967. https://doi.org/10.1021/ACSAMI.6B07528

    Article  CAS  PubMed  Google Scholar 

  34. Akanny E, Bonhommé A, Commun C, et al (2019) Development of uncoated near-spherical gold nanoparticles for the label-free quantification of Lactobacillus rhamnosus GG by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2019 41121 411:5563–5576. https://doi.org/10.1007/S00216-019-01938-4

  35. Thacker V V., Herrmann LO, Sigle DO, et al (2014) DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat Commun 2014 51 5:1–7. https://doi.org/10.1038/ncomms4448

  36. Ferhan AR, Jackman JA, Sut TN, Cho N-J (2018) Quantitative comparison of protein adsorption and conformational changes on dielectric-coated nanoplasmonic sensing arrays. Sensors 2018, Vol 18, Page 1283 18:1283. https://doi.org/10.3390/S18041283

  37. Kamińska A, Sprynskyy M, Winkler K, Szymborski T (2017) Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma. Anal Bioanal Chem 2017 40927 409:6337–6347. https://doi.org/10.1007/S00216-017-0566-5

  38. Cho IH, Bhandari P, Patel P, Irudayaraj J (2015) Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef. Biosens Bioelectron 64:171–176. https://doi.org/10.1016/J.BIOS.2014.08.063

    Article  CAS  PubMed  Google Scholar 

  39. Bai X, Shen A, Hu J (2020) A sensitive SERS-based sandwich immunoassay platform for simultaneous multiple detection of foodborne pathogens without interference. Anal Methods 12:4885–4891. https://doi.org/10.1039/D0AY01541E

    Article  CAS  PubMed  Google Scholar 

  40. Pallaoro A, Hoonejani MR, Braun GB et al (2015) Rapid identification by surface-enhanced raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9:4328–4336. https://doi.org/10.1021/acsnano.5b00750

    Article  CAS  PubMed  Google Scholar 

  41. Vosgröne T, Meixner AJ (2005) Surface- and resonance-enhanced micro-Raman spectroscopy of xanthene dyes: from the ensemble to single molecules. ChemPhysChem 6:154–163. https://doi.org/10.1002/CPHC.200400395

    Article  PubMed  Google Scholar 

  42. Doyle MP (2013) Food safety: bacterial contamination. Encycl Hum Nutr 2–4:322–330. https://doi.org/10.1016/B978-0-12-375083-9.00124-0

    Article  Google Scholar 

Download references

Funding

This research was financially supported by USDA National Institute of Food and Agriculture (2018-67017-27880, 2019-67021-29859), the National Science Foundation (CBET-2103025), and the Robert T. Marshall Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengshi Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, S., Dhital, R., Aghvami, S.A. et al. Separation and detection of E. coli O157:H7 using a SERS-based microfluidic immunosensor. Microchim Acta 189, 111 (2022). https://doi.org/10.1007/s00604-022-05187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05187-8

Keywords

Navigation