Skip to main content
Log in

New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

A Correction to this article was published on 06 August 2022

This article has been updated

Abstract

The ubiquity and importance of ROS and RNS in cellular signaling, disease development, and death give rise to an outstanding interest in their detection and quantification. Among the analytical techniques available, electrochemical sensors stand out for the detection of ROS/RNS due to their high sensitivity and inherent miniaturization which allows the in situ and real-time detection together with a tunable selectivity due to the different electrochemical behavior of ROS/RNS. Nanomaterial-based enzyme-free electrochemical sensors possess improved sensitivity, selectivity, stability, and unique catalytic activities. In addition, their integration in nanoelectrodes, lab-on-chips, microfluidic systems, and stretchable electrodes allow the determination of ROS/RNS in individual cells, cell organelles, or cell populations, under different experimental conditions hardly accessible using classical detection methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748. https://doi.org/10.1146/annurev-biochem-061516-045037

    Article  CAS  PubMed  Google Scholar 

  3. Marklund S (1976) Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase. J Biol Chem 251:7504–7507

    Article  CAS  Google Scholar 

  4. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605. https://doi.org/10.1152/physrev.1979.59.3.527

    Article  CAS  PubMed  Google Scholar 

  5. Sies H (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11

  6. Ford PC, Wink DA, Stanbury DM (1993) Autoxidation kinetics of aqueous nitric oxide. FEBS Lett 326:1–3. https://doi.org/10.1016/0014-5793(93)81748-O

    Article  CAS  PubMed  Google Scholar 

  7. Molina C, Kissner R, Koppenol WH (2013) Decomposition kinetics of peroxynitrite: influence of pH and buffer. Dalt Trans 42:9898–9905. https://doi.org/10.1039/c3dt50945a

    Article  CAS  Google Scholar 

  8. Zhao S, Zang G, Zhang Y et al (2021) Recent advances of electrochemical sensors for detecting and monitoring ROS/RNS. Biosens Bioelectron 179:113052. https://doi.org/10.1016/J.BIOS.2021.113052

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Dai M, Yuan Z (2018) Methods for the detection of reactive oxygen species. Anal Methods 10:4625–4638

    Article  CAS  Google Scholar 

  10. Winyard PG, Spickett CM, Griffiths HR (2011) Analysis of radicals and radical reaction products in cell signalling and biomolecular damage: the long hard road to gold-standard measures. Biochem Soc Trans 39:1217–1220

    Article  CAS  Google Scholar 

  11. Kopáni M, Celec P, Danišovič L et al (2006) Oxidative stress and electron spin resonance. Clin Chim Acta 364:61–66. https://doi.org/10.1016/J.CCA.2005.05.016

    Article  PubMed  Google Scholar 

  12. Jiao X, Li Y, Niu J, et al (2017) Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems. Anal Chem acs.analchem.7b04234. https://doi.org/10.1021/acs.analchem.7b04234

  13. Whiteman M, Dogra Y, Winyard PG, Armstrong JS (2008) Detection and measurement of reactive oxygen intermediates in mitochondria and cells. Methods Mol Biol 476:29–50. https://doi.org/10.1007/978-1-59745-129-1_3

    Article  CAS  PubMed  Google Scholar 

  14. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022

    Article  CAS  Google Scholar 

  15. Calas-Blanchard C, Catanante G, Noguer T (2014) Electrochemical sensor and biosensor strategies for ROS/RNS detection in biological systems. Electroanalysis 26:1277–1286. https://doi.org/10.1002/elan.201400083

    Article  CAS  Google Scholar 

  16. Ligler FS, White HS (2013) Nanomaterials in analytical chemistry. Anal Chem 85:11161–11162. https://doi.org/10.1021/ac403331m

    Article  CAS  PubMed  Google Scholar 

  17. Arduini F, Cinti S, Scognamiglio V et al (2017) How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review Anal Chim Acta 959:15–42

    Article  CAS  Google Scholar 

  18. Komkova MA, Zarochintsev AA, Karyakina EE, Karyakin AA (2020) Electrochemical and sensing properties of Prussian Blue based nanozymes “artificial peroxidase.” J Electroanal Chem 114048.https://doi.org/10.1016/j.jelechem.2020.114048

  19. Ying Y-L, Ding Z, Zhan D, Long Y-T (2017) Advanced electroanalytical chemistry at nanoelectrodes. Chem Sci 8:3338–3348. https://doi.org/10.1039/C7SC00433H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hernández-Rodríguez JF, Della Pelle F, Rojas D et al (2020) Xurography-enabled thermally transferred carbon nanomaterial-based electrochemical sensors on polyethylene terephthalate-ethylene vinyl acetate films. Anal Chem 92:13565–13572. https://doi.org/10.1021/acs.analchem.0c03240

    Article  CAS  PubMed  Google Scholar 

  21. O’Neil GD (2020) Toward single-step production of functional electrochemical devices using 3D printing: progress, challenges, and opportunities. Curr Opin Electrochem 20:60–65

    Article  Google Scholar 

  22. Hernández-Rodríguez JF, Rojas D, Escarpa A (2020) Rapid and cost-effective benchtop microfabrication of disposable carbon-based electrochemical microfluidic devices. Sensors Actuators B Chem 324:128679. https://doi.org/10.1016/j.snb.2020.128679

    Article  CAS  Google Scholar 

  23. Hall SB, Khudaish EA, Hart AL (1997) Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism Electrochim Acta 43:579–588. https://doi.org/10.1016/S0013-4686(97)00125-4

    Article  Google Scholar 

  24. Lee S, Lee YJ, Kim JH, Lee GJ (2020) Electrochemical detection of H2O2 released from prostate cancer cells using Pt nanoparticle-decorated rGO-CNT nanocomposite-modified screen-printed carbon electrodes. Chemosensors 8:63. https://doi.org/10.3390/CHEMOSENSORS8030063

    Article  CAS  Google Scholar 

  25. Jiménez-Pérez R, Almagro L, González-Sánchez MI et al (2020) Non-enzymatic screen-printed sensor based on PtNPs@polyazure A for the real-time tracking of the H2O2 secreted from living plant cells. Bioelectrochemistry 134:107526. https://doi.org/10.1016/j.bioelechem.2020.107526

    Article  CAS  PubMed  Google Scholar 

  26. Wei P, Sun D, Niu Y et al (2020) Enzyme-free electrochemical sensor for the determination of hydrogen peroxide secreted from MCF-7 breast cancer cells using calcined indium metal-organic frameworks as efficient catalysts. Electrochim Acta 359:136962. https://doi.org/10.1016/j.electacta.2020.136962

    Article  CAS  Google Scholar 

  27. Liu Y, Shang T, Liu Y et al (2018) Highly sensitive platinum nanoparticles-embedded porous graphene sensor for monitoring ROS from living cells upon oxidative stress. Sensors Actuators, B Chem 263:543–549. https://doi.org/10.1016/j.snb.2018.02.135

    Article  CAS  Google Scholar 

  28. Dervisevic E, Dervisevic M, Wang Y et al (2020) Highly selective nanostructured electrochemical sensor utilizing densely packed ultrathin gold nanowires film. Electroanalysis 32:1850–1858. https://doi.org/10.1002/elan.202060071

    Article  CAS  Google Scholar 

  29. Patella B, Buscetta M, Di Vincenzo S et al (2021) Electrochemical sensor based on rGO/Au nanoparticles for monitoring H2O2 released by human macrophages. Sensors Actuators B Chem 327:128901. https://doi.org/10.1016/j.snb.2020.128901

    Article  CAS  Google Scholar 

  30. Ma B, Kong C, Hu X et al (2018) A sensitive electrochemical nonenzymatic biosensor for the detection of H2O2 released from living cells based on ultrathin concave Ag nanosheets. Biosens Bioelectron 106:29–36. https://doi.org/10.1016/j.bios.2018.01.041

    Article  CAS  PubMed  Google Scholar 

  31. He G, Gao F, Li W et al (2019) Electrochemical sensing of H2O2 released from living cells based on AuPd alloy-modified PDA nanotubes. Anal Methods 11:1651–1656. https://doi.org/10.1039/C8AY02743A

    Article  CAS  Google Scholar 

  32. Liu Y, Li H, Gong S et al (2019) A novel non-enzymatic electrochemical biosensor based on the nanohybrid of bimetallic PdCu nanoparticles/carbon black for highly sensitive detection of H2O2 released from living cells. Sensors Actuators, B Chem 290:249–257. https://doi.org/10.1016/j.snb.2019.03.129

    Article  CAS  Google Scholar 

  33. Lu N, Zheng B, Gu Y et al (2019) Electrochimica Acta Fabrication of CoNPs-embedded porous carbon composites based on morphochemical imprinting strategy for detection of H2O2 released from living cells. Electrochim Acta 321:134717. https://doi.org/10.1016/j.electacta.2019.134717

    Article  CAS  Google Scholar 

  34. Xie J, Cheng D, Zhou Z et al (2020) Hydrogen peroxide sensing in body fluids and tumor cells via in situ produced redox couples on two-dimensional holey CuCo2O4 nanosheets. Microchim Acta 187:1–10. https://doi.org/10.1007/s00604-020-04389-2

    Article  CAS  Google Scholar 

  35. Mani V, Shanthi S, Peng T-KK et al (2019) Real-time quantification of hydrogen peroxide production in living cells using NiCo2S4@CoS2 heterostructure. Sensors Actuators B Chem 287:124–130. https://doi.org/10.1016/J.SNB.2019.02.015

    Article  CAS  Google Scholar 

  36. Chen X, Gao J, Zhao G, Wu C (2020) In situ growth of FeOOH nanoparticles on physically-exfoliated graphene nanosheets as high performance H2O2 electrochemical sensor. Sensors Actuators, B Chem 313:128038. https://doi.org/10.1016/j.snb.2020.128038

    Article  CAS  Google Scholar 

  37. Lu J, Hu Y, Wang P et al (2020) Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sensors Actuators, B Chem 311:127909. https://doi.org/10.1016/j.snb.2020.127909

    Article  CAS  Google Scholar 

  38. Zhao P, Chen S, Zhou J et al (2020) A novel Fe-hemin-metal organic frameworks supported on chitosan-reduced graphene oxide for real-time monitoring of H2O2 released from living cells. Anal Chim Acta 1128:90–98. https://doi.org/10.1016/j.aca.2020.06.008

    Article  CAS  PubMed  Google Scholar 

  39. Hicks JM, Halkerston R, Silman N et al (2019) Real-time bacterial detection with an intracellular ROS sensing platform. Biosens Bioelectron 141:111430. https://doi.org/10.1016/j.bios.2019.111430

    Article  CAS  PubMed  Google Scholar 

  40. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389–407. https://doi.org/10.1016/j.bios.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  41. Karyakin AA (2017) Advances of Prussian blue and its analogues in (bio)sensors. Curr Opin Electrochem. https://doi.org/10.1016/j.coelec.2017.07.006

    Article  Google Scholar 

  42. Balamurugan TST, Mani V, Hsieh CC et al (2018) Real-time tracking and quantification of endogenous hydrogen peroxide production in living cells using graphenated carbon nanotubes supported Prussian blue cubes. Sensors Actuators, B Chem 257:220–227. https://doi.org/10.1016/j.snb.2017.10.151

    Article  CAS  Google Scholar 

  43. Rojas D, Della Pelle F, Del Carlo M et al (2018) Electrodeposited Prussian Blue on carbon black modified disposable electrodes for direct enzyme-free H2O2 sensing in a Parkinson’s disease in vitro model. Sensors Actuators, B Chem 275:402–408. https://doi.org/10.1016/j.snb.2018.08.040

    Article  CAS  Google Scholar 

  44. McBeth C, Paterson A, Sharp D (2020) Pad-printed Prussian blue doped carbon ink for real-time peroxide sensing in cell culture. J Electroanal Chem 878:114537. https://doi.org/10.1016/j.jelechem.2020.114537

    Article  CAS  Google Scholar 

  45. Guo X, Cao Q, Liu Y et al (2020) Organic electrochemical transistor for in situ detection of H2O2 released from adherent cells and its application in evaluating the in vitro cytotoxicity of nanomaterial. Anal Chem 92:908–915. https://doi.org/10.1021/acs.analchem.9b03718

    Article  CAS  PubMed  Google Scholar 

  46. Manibalan K, Han S, Zheng Y et al (2019) Latent redox reporter of 4-methoxyphenol as electrochemical signal proxy for real-time profiling of endogenous H2O2 in living cells. ACS Sensors 4:2450–2457. https://doi.org/10.1021/acssensors.9b01049

    Article  CAS  PubMed  Google Scholar 

  47. Ni Y, Liu H, Dai D et al (2018) Chromogenic, fluorescent, and redox sensors for multichannel imaging and detection of hydrogen peroxide in living cell systems. Anal Chem 90:10152–10158. https://doi.org/10.1021/acs.analchem.7b04435

    Article  CAS  PubMed  Google Scholar 

  48. Hayyan M, Hashim MA, Alnashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116:3029–3085

    Article  CAS  Google Scholar 

  49. Yang H, Hou J, Wang Z et al (2018) An ultrasensitive biosensor for superoxide anion based on hollow porous PtAg nanospheres. Biosens Bioelectron 117:429–435. https://doi.org/10.1016/j.bios.2018.06.034

    Article  CAS  PubMed  Google Scholar 

  50. Jiao J, Wen L, Wang Z et al (2020) Highly sensitive sensor based on Pt@MnO 2 /rGO nanosheets as a platform for real-time monitoring cellular ROS and its application in diverse cancers. J Electrochem Soc 167:067524. https://doi.org/10.1149/1945-7111/ab8367

    Article  CAS  Google Scholar 

  51. Wu T, Li L, Song G et al (2019) An ultrasensitive electrochemical sensor based on cotton carbon fiber composites for the determination of superoxide anion release from cells. Microchim Acta 186:198. https://doi.org/10.1007/s00604-019-3304-1

    Article  CAS  Google Scholar 

  52. Wu T, Li L, Jiang X et al (2020) Construction of silver-cotton carbon fiber sensing interface and study on the protective effect of antioxidants on hypoxia-induced cell damage. Microchem J 159:105345. https://doi.org/10.1016/j.microc.2020.105345

    Article  CAS  Google Scholar 

  53. Ding A, Wang B, Ma X et al (2018) DNA-induced synthesis of biomimetic enzyme for sensitive detection of superoxide anions released from live cell. RSC Adv 8:12354–12359. https://doi.org/10.1039/c7ra12962a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zheng J, Wang B, Jin Y et al (2019) Nanostructured MXene-based biomimetic enzymes for amperometric detection of superoxide anions from HepG2 cells. Microchim Acta 186:95. https://doi.org/10.1007/s00604-018-3220-9

    Article  CAS  Google Scholar 

  55. Cai X, Shi L, Sun W et al (2018) A facile way to fabricate manganese phosphate self-assembled carbon networks as efficient electrochemical catalysts for real-time monitoring of superoxide anions released from HepG2 cells. Biosens Bioelectron 102:171–178. https://doi.org/10.1016/j.bios.2017.11.020

    Article  CAS  PubMed  Google Scholar 

  56. Cai X, Gao Q, Zuo S et al (2020) Smartphone-coupled electrochemical analysis of cellular superoxide anions based on Mnx(PO4)y monolayer modified porous carbon. Electroanalysis 32:598–605. https://doi.org/10.1002/elan.201900623

    Article  CAS  Google Scholar 

  57. Zou Z, Chen J, Shi Z et al (2021) Cobalt phosphates loaded into iodine-spaced reduced graphene oxide nanolayers for electrochemical measurement of superoxide generated by cells. ACS Appl Nano Mater 4:3631–3638. https://doi.org/10.1021/ACSANM.1C00148/SUPPL_FILE/AN1C00148_SI_001.PDF

    Article  CAS  Google Scholar 

  58. Gao Q, Zhao H, Wang Z et al (2021) Fabrication of hierarchically porous carbon networks for the electrochemical determination of superoxide anion released from living cells. Sensors Actuators B Chem 330:129309. https://doi.org/10.1016/J.SNB.2020.129309

    Article  CAS  Google Scholar 

  59. Jeong J, Essafi M, Lee C et al (2018) Ultrasensitive detection of hazardous reactive oxygen species using flexible organic transistors with polyphenol-embedded conjugated polymer sensing layers. J Hazard Mater 355:17–24. https://doi.org/10.1016/j.jhazmat.2018.04.063

    Article  CAS  PubMed  Google Scholar 

  60. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science (80- ) 258:1898–1902. https://doi.org/10.1126/science.1281928

  61. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615. https://doi.org/10.1042/bj3570593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Radi R, Cassina A, Hodara R et al (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 33:1451–1464. https://doi.org/10.1016/S0891-5849(02)01111-5

    Article  CAS  PubMed  Google Scholar 

  63. De Vooys ACA, Beltramo GL, Van Riet B, et al (2004) Mechanisms of electrochemical reduction and oxidation of nitric oxide. In: Electrochimica Acta. Pergamon, pp 1307–1314

  64. Brown MD, Schoenfisch MH (2019) Selective and sensocompatible electrochemical nitric oxide sensor with a bilaminar design. ACS Sensors 4:1766–1773. https://doi.org/10.1021/acssensors.9b00170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu Z, Nemec-Bakk A, Khaper N, Chen A (2017) Sensitive electrochemical detection of nitric oxide release from cardiac and cancer cells via a hierarchical nanoporous gold microelectrode. Anal Chem 89:8036–8043. https://doi.org/10.1021/acs.analchem.7b01430

    Article  CAS  PubMed  Google Scholar 

  66. Dou B, Li J, Jiang B et al (2019) DNAlated in situ synthesis of highly dispersed AuNPs on nitrogen-doped graphene for real-time electrochemical monitoring of nitric oxide released from live cancer cells. Anal Chem 91:2273–2278. https://doi.org/10.1021/acs.analchem.8b04863

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Y, Lu SY, Shi Z et al (2019) A multi-component Cu 2 O@FePO 4 core-cage structure to jointly promote fast electron transfer toward the highly sensitive: in situ detection of nitric oxide. Nanoscale 11:4471–4477. https://doi.org/10.1039/c8nr10198a

    Article  CAS  PubMed  Google Scholar 

  68. Zhang Y, Guo CX, Wu C et al (2021) Electrochemically tuning Li1+xFePO4 for high oxidation state of rich Li+ toward highly sensitive detection of nitric oxide. Electrochim Acta 365:137347. https://doi.org/10.1016/j.electacta.2020.137347

    Article  CAS  Google Scholar 

  69. Amatore C, Arbault S, Bruce D et al (2001) Characterization of the electrochemical oxidation of peroxynitrite: relevance to oxidative stress bursts measured at the single cell level. Chem - A Eur J 7:4171–4179. https://doi.org/10.1002/1521-3765(20011001)7:19%3c4171::AID-CHEM4171%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  70. Li L, Zhang B, Liu F et al (2020) Direct sensing of peroxynitrite anion at sensitive hollow tubular organic conjugated microporous polymers modified electrode. Application to selective analysis of ROS and RNS in cells. Sensors Actuators B Chem 306:127560. https://doi.org/10.1016/j.snb.2019.127560

    Article  CAS  Google Scholar 

  71. Liu F, Li L, Zhang B et al (2019) A novel electrochemical sensor based on microporous polymeric nanospheres for measuring peroxynitrite anion released by living cells and studying the synergistic effect of antioxidants. Analyst 144:6905–6913. https://doi.org/10.1039/c9an01693g

    Article  CAS  PubMed  Google Scholar 

  72. Amatore C, Arbault S, Guille M, Lemaître F (2008) Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress. Chem Rev 108:2585–2621

    Article  CAS  Google Scholar 

  73. Sun P, Laforge FO, Abeyweera TP et al (2008) Nanoelectrochemistry of mammalian cells. Proc Natl Acad Sci U S A 105:443–448. https://doi.org/10.1073/pnas.0711075105

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jiang H, Zhang X, Liao Q et al (2019) Electrochemical monitoring of paclitaxel-induced ROS release from mitochondria inside single cells. Small 15:1901787. https://doi.org/10.1002/smll.201901787

    Article  CAS  Google Scholar 

  75. Wang Y, Feng H, Zhang H et al (2020) Nanoelectrochemical biosensors for monitoring ROS in cancer cells. Analyst 145:1294–1301. https://doi.org/10.1039/c9an02390a

    Article  CAS  PubMed  Google Scholar 

  76. Hu K, Li Y, Rotenberg SA, et al (2019) Electrochemical measurements of reactive oxygen and nitrogen species inside single phagolysosomes of living macrophages. J Am Chem Soc jacs.9b01217. https://doi.org/10.1021/jacs.9b01217

  77. Zhang X, Oleinick A, Jiang H et al (2019) Electrochemical monitoring of ROS/RNS homeostasis within individual phagolysosomes inside single macrophages. Angew Chemie Int Ed 58:7753–7756. https://doi.org/10.1002/anie.201902734

    Article  CAS  Google Scholar 

  78. Pan R, Hu K, Jia R et al (2020) Resistive-pulse sensing inside single living cells. J Am Chem Soc 142:5778–5784. https://doi.org/10.1021/jacs.9b13796

    Article  CAS  PubMed  Google Scholar 

  79. Xu M, Pan R, Zhu Y et al (2018) Resistive analysis of hydrogen peroxide in one axon of single neuron with nanopipets. Anal Chem 90:10117–10121. https://doi.org/10.1021/acs.analchem.8b01539

    Article  CAS  PubMed  Google Scholar 

  80. Ding S, Li M, Gong H et al (2020) Sensitive and selective measurement of hydroxyl radicals at subcellular level with tungsten nanoelectrodes. Anal Chem 92:2543–2549. https://doi.org/10.1021/acs.analchem.9b04139

    Article  CAS  PubMed  Google Scholar 

  81. Hernández-Rodríguez JF, Rojas D, Escarpa A (2020) Electrochemical sensing directions for next-generation healthcare: trends, challenges, and frontiers. Anal Chem acs.analchem.0c04378. https://doi.org/10.1021/acs.analchem.0c04378

  82. Kieninger J, Weltin A, Flamm H, Urban GA (2018) Microsensor systems for cell metabolism - from 2D culture to organ-on-chip. Lab Chip 18:1274–1291. https://doi.org/10.1039/c7lc00942a

    Article  CAS  PubMed  Google Scholar 

  83. Zhao Q, Cui H, Wang Y, Du X (2020) Microfluidic platforms toward rational material fabrication for biomedical applications. Small 16:1–22. https://doi.org/10.1002/smll.201903798

    Article  CAS  Google Scholar 

  84. Xu H, Liao C, Liu Y et al (2018) Iron phthalocyanine decorated nitrogen-doped graphene biosensing platform for real-time detection of nitric oxide released from living cells. Anal Chem 90:4438–4444. https://doi.org/10.1021/acs.analchem.7b04419

    Article  CAS  PubMed  Google Scholar 

  85. Lyu Z-M, Zhou X-L, Wang X-N et al (2019) Miniaturized electrochemiluminescent biochip prepared on gold nanoparticles-loaded mesoporous silica film for visual detection of hydrogen peroxide released from living cells. Sensors Actuators B Chem 284:437–443. https://doi.org/10.1016/J.SNB.2018.12.149

    Article  CAS  Google Scholar 

  86. Shokouhi M, Mehrgardi MA (2020) Cancer cell detection-based on released hydrogen peroxide using a non-modified closed bipolar electrochemical system. ChemElectroChem 7:3439–3444. https://doi.org/10.1002/celc.202000535

    Article  CAS  Google Scholar 

  87. Rojas D, Hernández-Rodríguez JF, Della Pelle F et al (2020) Oxidative stress on-chip: Prussian blue-based electrode array for in situ detection of H2O2 from cell populations. Biosens Bioelectron 170:112669. https://doi.org/10.1016/j.bios.2020.112669

    Article  CAS  PubMed  Google Scholar 

  88. Sridharan SV, Rivera JF, Nolan JK et al (2018) On-chip microelectrode array and in situ transient calibration for measurement of transient concentration gradients near surfaces of 2D cell cultures. Sensors Actuators, B Chem 260:519–528. https://doi.org/10.1016/j.snb.2017.12.194

    Article  CAS  Google Scholar 

  89. Rivera JF, Sridharan VS, Nolan JK et al (2018) Real-time characterization of uptake kinetics of glioblastoma: Vs. astrocytes in 2D cell culture using microelectrode array. Analyst 143:4954–4966. https://doi.org/10.1039/c8an01198b

    Article  CAS  PubMed  Google Scholar 

  90. Bunnfors K, Abrikossova N, Kilpijärvi J et al (2020) Nanoparticle activated neutrophils-on-a-chip: a label-free capacitive sensor to monitor cells at work. Sensors Actuators, B Chem 313:128020. https://doi.org/10.1016/j.snb.2020.128020

    Article  CAS  Google Scholar 

  91. Chen JY, Li CM, Zhu W et al (2019) An AUC-based impedance sensing method for rapid assessment of antioxidant compounds with NIH-3T3 cells cultured in a 16-well E-plate with integrated microelectrode arrays. Sensors Actuators B Chem 283:390–398. https://doi.org/10.1016/j.snb.2018.12.032

    Article  CAS  Google Scholar 

  92. Liu MM, Liu H, Li SH et al (2021) Integrated paper-based 3D platform for long-term cell culture and in situ cell viability monitoring of Alzheimer’s disease cell model. Talanta 223:121738. https://doi.org/10.1016/j.talanta.2020.121738

    Article  CAS  PubMed  Google Scholar 

  93. Jiang H, Yang J, Wan K et al (2020) Miniaturized paper-supported 3D cell-based electrochemical sensor for bacterial lipopolysaccharide detection. ACS Sensors 5:1325–1335. https://doi.org/10.1021/acssensors.9b02508

    Article  CAS  PubMed  Google Scholar 

  94. Fernández-la-Villa A, Pozo-Ayuso DF, Castaño-Álvarez M (2019) Microfluidics and electrochemistry: an emerging tandem for next-generation analytical microsystems. Curr Opin Electrochem 15:175–185. https://doi.org/10.1016/j.coelec.2019.05.014

    Article  CAS  Google Scholar 

  95. Li Y, Sella C, Lemaître F et al (2018) Downstream simultaneous electrochemical detection of primary reactive oxygen and nitrogen species released by cell populations in an integrated microfluidic device. Anal Chem 90:9386–9394. https://doi.org/10.1021/acs.analchem.8b02039

    Article  CAS  PubMed  Google Scholar 

  96. Townsend AD, Sprague RS, Martin RS (2019) Microfluidic device using a gold pillar array and integrated electrodes for on-chip endothelial cell immobilization, Direct RBC Contact, and Amperometric Detection of Nitric Oxide. Electroanalysis 31:1409–1415. https://doi.org/10.1002/elan.201900157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Siegel JM, Schilly KM, Wijesinghe MB et al (2019) Optimization of a microchip electrophoresis method with electrochemical detection for the determination of nitrite in macrophage cells as an indicator of nitric oxide production. Anal Methods 11:148–156. https://doi.org/10.1039/C8AY02014K

    Article  CAS  PubMed  Google Scholar 

  98. Giménez-Gómez P, Rodríguez-Rodríguez R, Ríos JM et al (2020) A self-calibrating and multiplexed electrochemical lab-on-a-chip for cell culture analysis and high-resolution imaging. Lab Chip 20:823–833. https://doi.org/10.1039/C9LC01051C

    Article  PubMed  Google Scholar 

  99. Zhao X, Wang K, Li B et al (2018) Fabrication of a flexible and stretchable nanostructured gold electrode using a facile ultraviolet-irradiation approach for the detection of nitric oxide released from cells. Anal Chem 90:7158–7163. https://doi.org/10.1021/acs.analchem.8b01088

    Article  CAS  PubMed  Google Scholar 

  100. Liu YL, Qin Y, Jin ZH et al (2017) A stretchable electrochemical sensor for inducing and monitoring cell mechanotransduction in real time. Angew Chemie - Int Ed 56:9454–9458. https://doi.org/10.1002/anie.201705215

    Article  CAS  Google Scholar 

  101. Jin ZH, Liu YL, Chen JJ et al (2017) Conductive polymer-coated carbon nanotubes to construct stretchable and transparent electrochemical sensors. Anal Chem 89:2032–2038. https://doi.org/10.1021/acs.analchem.6b04616

    Article  CAS  PubMed  Google Scholar 

  102. Zhou M, Jiang Y, Wang G et al (2020) Single-atom Ni-N4 provides a robust cellular NO sensor. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-17018-6

    Article  CAS  Google Scholar 

  103. Lyu Q, Zhai Q, Dyson J et al (2019) Real-time and in-situ monitoring of H2O2 release from living cells by a stretchable electrochemical biosensor based on vertically aligned gold nanowires. Anal Chem 91:13521–13527. https://doi.org/10.1021/acs.analchem.9b02610

    Article  CAS  PubMed  Google Scholar 

  104. Wang Y-W, Liu Y-L, Xu J-Q et al (2018) Stretchable and photocatalytically renewable electrochemical sensor based on sandwich nanonetworks for real-time monitoring of cells. Anal Chem 90:5977–5981. https://doi.org/10.1021/acs.analchem.8b01396

    Article  CAS  PubMed  Google Scholar 

  105. Ling Y, Lyu Q, Zhai Q et al (2020) Design of stretchable holey gold biosensing electrode for real-time cell monitoring. ACS Sensors 5:3165–3171. https://doi.org/10.1021/acssensors.0c01297

    Article  CAS  PubMed  Google Scholar 

  106. Li R, Qi H, Ma Y et al (2020) A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat Commun 11:1–11. https://doi.org/10.1038/s41467-020-17008-8

    Article  CAS  Google Scholar 

  107. Fan W-T, Qin Y, Hu X-B, et al (2020) Stretchable electrode based on Au@Pt nanotube networks for real-time monitoring of ROS signaling in endothelial mechanotransduction. Anal Chem 12:acs.analchem.0c04015. https://doi.org/10.1021/acs.analchem.0c04015

  108. Jin Z, Liu Y, Fan W, Huang W (2020) Integrating flexible electrochemical sensor into microfluidic chip for simulating and monitoring vascular mechanotransduction. Small 16:1903204. https://doi.org/10.1002/smll.201903204

    Article  CAS  Google Scholar 

  109. Hernández-Rodríguez JF, Rojas D, Escarpa A (2020) Electrochemical sensing directions for next-generation healthcare: trends, challenges, and frontiers. Anal. Chem.

  110. SalentijnOomenGrajewskiVerpoorte GIJPEME (2017) Fused deposition modeling 3D printing for (bio)analytical device fabrication: procedures, materials, and applications. Anal Chem 89:7053–7061. https://doi.org/10.1021/acs.analchem.7b00828

    Article  CAS  Google Scholar 

  111. Campbell SB, Wu Q, Yazbeck J et al (2020) Beyond polydimethylsiloxane: alternative materials for fabrication of organ-on-a-chip devices and microphysiological systems. ACS Biomater Sci Eng 7:2880–2899. https://doi.org/10.1021/ACSBIOMATERIALS.0C00640

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

D.R. acknowledges European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement N°713714 and co-funding of University of Teramo and Abruzzo region.

J.F.H-R. and A.E. acknowledge financial support from the TRANSNANOAVANSENS program (S2018-NMT-4349) from the Community of Madrid. AE also acknowledges Spanish Ministry of Economy, Industry and Competitiveness (CTQ2017-86441-C2-1-R). J.F.H-R also acknowledges the FPI fellowship received from the University of Alcalá.

F.D.P. and D.C. acknowledge the Ministry of Education, University and Research (MIUR) and European Social Fund (ESF) for the PON R&I 2014–2020 program, action 1.2 “AIM: Attraction and International Mobility” (AIM1894039-3).

D.C. acknowledges the PRIN 2017 ACTUaL project of the Italian Ministry of Education, University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alberto Escarpa or Dario Compagnone.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article, Figs. 1, 3, 4 must be updated so caption and image are within the page. Given here are the corrected figures.

Glossary

17-oxo-DHA:

17-Oxo-docosahexaenoic acid

A431:

Model human cell line epidermoid carcinoma

A549:

Adenocarcinomic human alveolar basal epithelial cells

AA:

Ascorbic acid

ALA:

Alpha lipoic acid

AuNFs:

Gold nanoflowers

AuNTs:

Gold nanotubes

AuNWs:

Gold nanowires

Aβ:

Amyloid β protein

CaCo-2:

Immortalized cell line of human colorectal adenocarcinoma cells

CB:

Carbon black

CHAPS:

3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate

CNTs:

Carbon nanotubes

CTS:

Chitosan

DLTA:

DL-thioctic acid

DPV:

Differential pulsed voltammetry

fMLP:

N-formylmethionyl-leucyl-phenylalanine peptide

GCE:

Glassy carbon electrode

GNs:

Graphene nanosheets

GSH:

Glutathione

GSH:

Reduced glutathione

H9C2:

Cell model used as an alternative for cardiomyocytes

HAT:

1-Hexanethiol

HEBEC:

Human bronchial epithelial cells

HEK-293:

Normal fetal human embryonic kidney cells

HepG2:

Human liver cancer cell line

DU145:

Human prostate cancer cells

HUVEC:

Human umbilical vein endothelial cells. Are primary human cells isolated from the vein of the umbilical cord

IFN-γ:

Interferon-γ

ITO:

Indium tin oxide

L-Arg:

L-Arginine

L-NAME:

N-nitroarginine methyl ester

LNCaP:

Cell line derived from a metastatic lymph node lesion of human prostate cancer

LPS:

Lipopolysaccharide

MCF-7:

Breast cancer cell line isolated

MDA-MB-231:

Human breast adenocarcinoma cells. Cell line isolated from the breast tissue of an adenocarcinoma patient

MEA:

Microelectrode array

MOF:

Metal-organic framework

MP:

4-Methoxy phenol

MPNS:

Microporous polymeric nanospheres

MWCNTs:

Multiwalled carbon nanotubes

NAC:

N-acetyl-L-cysteine

NCS:

N-doped carbon spheres

NGS:

N-doped graphene nanosheets

OFET:

Organic field-effect transistor

PB:

Prussian blue

PC12:

Cell line derived from a pheochromocytoma of the rat adrenal medulla

PDA:

Polydopamine

PDMS:

Polydimethylsiloxane

PET:

Polyethylene terephthalate

PHT:

Poly(3-hexylthiophene)

PLLA-PTMC:

Copolymer of poly(L-lactic acid) and polytrimethylene carbonate

PMA:

Phorbol 12-myristate 13-acetate

Raw 264.7:

Macrophage-like cells, originating from Abelson leukemia virus transformed cell line derived from BALB/c mice

rGO:

Reduced graphene oxide

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SAM:

Self-assembled monolayer

SECM:

Scanning electrochemical microscopy

SH-5Y5Y:

Neuroblastoma cell line. It serves as a model for neurodegenerative disorders

SK-OV-3:

Ovarian human cancer–derived cell line

SPCE:

Screen-printed carbon electrode

THP-1:

Immortalized monocyte-like cell line, derived from the peripheral blood of a childhood case of acute monocytic leukemia

U87:

Cell line derived from human malignant gliomas

UA:

Uric acid

UME:

Ultramicroelectrodes

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, D., Hernández-Rodríguez, J.F., Della Pelle, F. et al. New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis. Microchim Acta 189, 102 (2022). https://doi.org/10.1007/s00604-022-05185-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05185-w

Keywords

Navigation