Skip to main content
Log in

Polyaniline functionalized CoAl-layered double hydroxide nanosheets as a platform for the electrochemical detection of carbaryl and isoprocarb

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The preparation of the polyaniline/CoAl-layered double hydroxide composite (PANI/CoAl-LDH) is presented by ultrasonic mixing the uniform PANI- and CoAl-LDH-building blocks, both of which are synthesized in a microemulsion system. Due to the improved surface area, increased adsorptive and catalytic sites, and enhanced conductivity, the PANI/CoAl-LDH-modified glassy carbon electrode (GCE) delivers rapid electron-transfer and mass-transfer between the substrate electrode and analytes. Consequently, PANI/CoAl-LDH/GCE demonstrates outstanding electrocatalytic activity toward carbaryl and isoprocarb with good selectivity, stability, and reproducibility. The amperometric sensor gives rise to a wide linear range of 0.1 ~ 150 μM for both carbaryl and isoprocarb at 0.19 and 0.39 V (vs. SCE), respectively. Their limits of detection are respectively 6.8 and 8.1 nM. This sensor is successfully used for the determination of carbaryl and isoprocarb pesticides in real vegetable samples with a relative standard deviation below 4%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee M, Patil V, Na Y, Lee D, Lim S, Yi G (2018) Highly stable, rapid colorimetric detection of carbaryl pesticides by azo coupling reaction with chemical pre-treatment. Sensor Actuat B-Chem 261:489–496

    Article  CAS  Google Scholar 

  2. Balamurugan T, Alagumalai K, Ming C, Sudhakaran M, Choe H (2020) Rational design and interlayer effect of dysprosium-stannate nanoplatelets incorporated graphene oxide: a versatile and competent electrocatalyst for toxic carbamate pesticide detection in vegetables. ACS Sustainable Chem Eng 8:17882–17892

    Article  Google Scholar 

  3. Chen Z, Wu H, Xiao Z, Fua H, Shen Y, Luo L, Wang H, Lei H, Hongsibsong S, Xu Z (2021) Rational hapten design to produce high-quality antibodies against carbamate pesticides and development of immunochromatographic assays for simultaneous pesticide screening. J. Hazard. Mater 412:125241

    Article  CAS  PubMed  Google Scholar 

  4. Santaladchaiyakid Y, Srijaranai S, Burakham R (2012) Methodological aspects of sample preparation for the determination of carbamate residues: a review. J Sep Sci 35:2373–2389

    Article  Google Scholar 

  5. Yan X, Kong D, Jin R, Zhao X, Li H, Liu F, Lin Y, Lu G (2019) Fluorometric and colorimetric analysis of carbamate pesticide via enzyme triggered decomposition of gold nanoclusters-anchored MnO2 nanocomposite. Sensor Actuat B-Chem 290:640–647

    Article  CAS  Google Scholar 

  6. da Silva MKL, Vanzela HC, Defavari LM, Cesarino I (2018) Determination of carbamate pesticide in food using a biosensor based on reduced graphene oxide and acetylcholinesterase enzyme. Sensor Actuat B-Chem 277:555–561

    Article  Google Scholar 

  7. Wang X, Hou T, Dong S, Liu X, Li F (2016) Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide. Biosens Bioelectron 77:644–649

    Article  CAS  PubMed  Google Scholar 

  8. Shi Z, Li Q, Xu D, Huai Q, Zhang H (2016) Graphene-based pipette tip solid-phase extraction with ultra-high performance liquid chromatography and tandem mass spectrometry for the analysis of carbamate pesticide residues in fruit juice. J Sep Sci 39:4391–4397

    Article  CAS  PubMed  Google Scholar 

  9. Tripathy V, Sharma K, Yadav R, Devi S, Tayade A, Sharma K, Pandey P, Singh G, Patel A, Gautam R, Gupta R, Kalra S, Shukla P, Walia S, Shakil N (2019) Development, validation of QuEChERS-based method for simultaneous determination of multiclass pesticide residue in milk, and evaluation of the matrix effect. J Environ Sci Health B 54:394–406

    Article  CAS  PubMed  Google Scholar 

  10. Sinha A, Ma K, Zhao H (2021) 2D Ti3C2Tx flakes prepared by in-situ HF etchant for simultaneous screening of carbamate pesticides. J Colloid Interface Sci 590:365–374

    Article  CAS  PubMed  Google Scholar 

  11. Gong J, Guan Z, Song D (2013) Biosensor based on acetylcholinesterase immobilized onto layered double hydroxides for flow injection/amperometric detection of organophosphate pesticides. Biosens Bioelectron 39:320–323

    Article  CAS  PubMed  Google Scholar 

  12. Qian G, Wang L, Wu Y, Zhang Q, Sun Q, Liu Y, Liu F (2019) A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples. Food Chem 117:364–370

    Article  Google Scholar 

  13. Qian S, Lin H (2015) Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides. Anal Chem 87:5395–5400

    Article  CAS  PubMed  Google Scholar 

  14. Rao N, Sarada B, Terashima C, Fujishima A (2002) Electrochemical detection of carbamate pesticides at conductive diamond electrodes. Anal Chem 74:1578–1583

    Article  CAS  PubMed  Google Scholar 

  15. Thiago M, Francisco W, Camila P, Giancarlo R, Pedro L, Adriana N, Simone M (2020) Current overview and perspectives on carbon-based (bio)sensors for carbamate pesticides electroanalysis. Anal. Chem 124:115779

    Google Scholar 

  16. Sinha A, Ma K, Zhao H (2019) Preparation of 3D assembly of mono layered molybdenum disulfide nanotubules for rapid screening of carbamate pesticide diethofencarb. Talanta 204:455–464

    Article  CAS  PubMed  Google Scholar 

  17. Zhan T, Zhang Y, Yang Q, Deng H, Xu J, Hou W (2016) Ultrathin layered double hydroxide nanosheets prepared from a water-in-ionic liquid surfactant-free microemulsion for phosphate removal from aquatic systems. Chem Eng J 302:459–465

    Article  CAS  Google Scholar 

  18. Zhan T, Song Y, Li X, Hou W (2016) Electrochemical sensor for bisphenol A based on ionic liquid functionalized Zn-Al layered double hydroxide modified electrode. Mater Sci Eng C 64:354–361

    Article  CAS  Google Scholar 

  19. Zhan T, Song Y, Tan Z, Hou W (2017) Electrochemical bisphenol A sensor based on exfoliated Ni2Al-layered double hydroxide nanosheets modified electrode. Sensor Actuat B-Chem 238:962–971

    Article  CAS  Google Scholar 

  20. Liu Y, Wan R, Wang H, Yu X, Liu X, He P, She X, Zhan T (2021) Electrochemical sensing for naphthol isomers based on the insitu growth of zeolitic imidazole framework-67 on ultrathin CoAl layered double hydroxide nanosheets by a reaction–diffusion technique. J Colloid Interface Sci 599:762–772

    Article  CAS  PubMed  Google Scholar 

  21. Tang S, Yao Y, Chen T, Kong D, Lee H (2020) Recent advances in the application of layered double hydroxides in analytical chemistry: a review. Anal Chim Acta 1103:32–48

    Article  CAS  PubMed  Google Scholar 

  22. Nadeem B, Muhammad S (2017) Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: a review, Trends Environ. Anal Chem 16:1–15

    Google Scholar 

  23. Li Z, Sun Y, Liu X, He P, Hou W, Zhan T (2021) Bottom-up fabrication of ultrathin CoFe layered double hydroxide nanosheets on oxidized carbon nanotube as a water oxidation electrocatalyst. J. Alloys Compd 857:157570

    Article  CAS  Google Scholar 

  24. Mahdi M, Amirifard H, Piryaei M (2019) Bio template route for fabrication of a hybrid material composed of hierarchical boehmite, layered double hydroxides (Mg-Al) and porous carbon on a steel fiber for solid phase microextraction of agrochemicals. Microchim Acta 186:678

    Article  Google Scholar 

  25. Zhan T, Wang X, Li X, Song Y, Hou W (2016) Hemoglobin immobilized in exfoliated Co2Al LDH-graphene nanocomposite film: direct electrochemistry and electrocatalysis toward trichloroacetic acid. Sensor Actuat B-Chem 2228:101–108

    Article  Google Scholar 

  26. Wang Z, Li X (2018) Synthesis of CoAl-layered double hydroxide/graphene oxide nanohybrid and its reinforcing effect in phenolic foams. High Perform Polym 30:688–698

    Article  CAS  Google Scholar 

  27. Gualandi I, Vlamidis Y, Mazzei L, Musella E, Giorgetti Marco, Christian Meganne, Morandi Vittorio, Scavetta Erika, Tonelli D (2019) Ni/Al layered double hydroxide and carbon nanomaterial composites for glucose sensing. ACS Appl. Nano Mater 2(143):155

    Google Scholar 

  28. Cai S, Chen L, Zhang J, Ke Y, Liu X (2020) Facile fabrication of PANI/Zn-tpps4 flexible NH3 sensor based. Sensor. Actuat. B-Chem 321:128476

    Article  CAS  Google Scholar 

  29. Tomsík E, Kohut O, Ivanko I, Pekarek M, Bieloshapka I, Dallas P (2018) Assembly and interaction of polyaniline chains: impact on electro and physical−chemical behavior. J Phys Chem C 122:8022–8030

    Article  Google Scholar 

  30. Ge X, He Y, Plachy T, Kazantseva N, Saha P, Cheng Q (2019) Hierarchical PANI/NiCo-LDH core-shell composite networks on carbon cloth for high performance asymmetric supercapacitor. Nanomaterials 9:527

    Article  CAS  PubMed Central  Google Scholar 

  31. Harraz F, Ismail A, Al-Sayari S, Al-Hajry A, Al-Assiri M (2016) Highly sensitive amperometric hydrazine sensor based on novel α-Fe2O3/crosslinked polyaniline nanocomposite modified glassy carbon electrode. Sensor Actuat B-Chem 234:573–582

    Article  CAS  Google Scholar 

  32. Li X-Z, Liu S-R, Guo Y (2016) Polyaniline-intercalated layered double hydroxide: synthesis and properties for humidity sensing. RSC Adv 6:63099–63106

    Article  CAS  Google Scholar 

  33. Zhan T, Tan Z, Wang X, Hou W (2018) Hemoglobin immobilized in g-C3N4 nanoparticle decorated 3D graphene-LDH network: direct electrochemistry and electrocatalysis to trichloroacetic acid. Sensor Actuat B-Chem 255:149–158

    Article  CAS  Google Scholar 

  34. Zhu J, Huo X, Liu X, Ju H (2016) Gold nanoparticles deposited polyaniline–TiO2 nanotube for surface plasmon resonance enhanced photoelectrochemical biosensing. ACS Appl Mater Interfaces 8:341–349

    Article  CAS  PubMed  Google Scholar 

  35. Moos V, Hamza F, Zinjarde S, Athawale A (2019) Polyurethane films modified with polyaniline-zinc oxide nanocomposites for biofouling mitigation. Chem Eng J 359:1400–1410

    Article  Google Scholar 

  36. Chen W, Liu Y, Zhang Y, Fang J, Xu P, Xu J, Li X, Liu C, Wen W (2017) Highly effective and specific way for the trace analysis of carbaryl insecticides based on Au42Rh58 alloy nanocrystals. J Mater Chem A 5:7064–7071

    Article  CAS  Google Scholar 

  37. Zhang J, Mei Q, Ding Y, Guo K, Yang X, Zhao J (2017) Ordered mesoporous NiCo2O4 nanospheres as a novel electrocatalyst platform for 1-Naphthol and 2-Naphthol individual sensing application. ACS Appl Mater Interfaces 9:29771–29781

    Article  CAS  PubMed  Google Scholar 

  38. Lin K, Yuan D, Deng Y, Chen M (2004) Hydrolytic products and kinetics of triazophos in buffered and alkaline solutions with different values of pH, Agric. Food Chem 52:5404–5411

    Article  CAS  Google Scholar 

  39. Rahmani T, Bagheri H, Behbahani M, Hajian A, Afkhami A (2018) Modified 3D Graphene-Au as a novel sensing layer for direct and sensitive electrochemical determination of carbaryl pesticide in fruit, vegetable, and water samples. Food Anal Methods 11:3005–3014

    Article  Google Scholar 

  40. Moraes F, Mascaro L, Machado S (2009) Direct electrochemical determination of carbaryl using a multi-walled carbon nanotube/cobalt phthalocyanine modified electrode. Talanta 79:1406–1411

    Article  CAS  PubMed  Google Scholar 

  41. Song Y, Chen J, Sun M, Gong C, Shen Y, Song Y, Wang L (2016) A simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples. J Hazard Mater 304:103–109

    Article  CAS  PubMed  Google Scholar 

  42. Wang M, Huang J, Wang MM (2014) Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem. 151(191):197

    Google Scholar 

  43. Dorozhko EV, Gashevskay AS, Korotkova EI, Barek J, Vyskocil V, Eremin SA, Galunin EV, Saqib M (2021) A copper nanoparticle-based electrochemical immunosensor for carbaryl detection. Talanta 228:122174

    Article  CAS  PubMed  Google Scholar 

  44. Cheng X, Wang Q, Zhang S (2007) Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode. Talanta 71:1083–1087

    Article  CAS  PubMed  Google Scholar 

  45. Fodjo EK, Riaz S, Li D-W, Qu L-L, Marius NP, Albertb T, Long Y-T (2012) Cu@Ag/b-AgVO3 as a SERS substrate for the trace level detection of carbamate pesticides. Anal Methods 4:3785

    Article  CAS  Google Scholar 

  46. Della Pelle F, Angelini C, Sergi M, Del Carlo M, Pepe A, D. (2018) Compagnone Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: application to grain samples. Talanta 186:389–396

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the Natural Science Foundation of Shandong Province, China (No. ZR2019MB062 and ZR2014JL013), the Key Research and Development Program of Shandong Province (2017GGX20143), Taishan Scholar Program of Shandong Province of China (No. ts201712045), the Foundation of Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, QUST (SATM201603), and the foundation of Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education (201702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianrong Zhan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3958 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, W., Ding, G., Wang, L. et al. Polyaniline functionalized CoAl-layered double hydroxide nanosheets as a platform for the electrochemical detection of carbaryl and isoprocarb. Microchim Acta 189, 78 (2022). https://doi.org/10.1007/s00604-022-05183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05183-y

Keywords

Navigation