Skip to main content
Log in

Laser ablative TiO2 and tremella-like CuInS2 nanocomposites for robust and ultrasensitive photoelectrochemical sensing of let-7a

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photoelectrochemical (PEC) biosensor based on a multiple signal amplification strategy was established for highly sensitive detection of microRNA (miRNA). TiO2 was prepared on the surface of titanium sheet by laser etching to improve its stability and photoelectrical properties, and CuInS2-sensitized TiO2 was used to form a superior photoelectrical layer, which realized the initial signal amplification. The electron donor dopamine (DA) was modified to H2 as a signal regulator, which effectively increased the photocurrent signal. To further amplify the signal, an enzyme-free hybridization reaction was implemented. When target let-7a and fuel-DNA (F-DNA) were present, the base of H1 specifically recognized let-7a and forced dopamine@AuNPs-H2 away from the electrode surface. Subsequently, the end base of H1 specifically recognized F-DNA, and let-7a was replaced and recycled to participate in the next cycle. Enzyme-free circulation, as a multifunctional amplification method, ensured the recycling of target molecules. This PEC sensor for let-7a detection showed an excellent linear response from 0.5 to 1000 pM with a detection limit of 0.12 pM. The intra-batch RSD was 3.8% and the recovery was 87.74–108.1%. The sensor was further used for clinical biomolecular monitoring of miRNA, showing excellent quantitative detection capability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang J, Chen C, Fu H, Yu J, Sun Y, Huang H (2020) MicroRNA-125a-Loaded polymeric nanoparticles alleviate systemic lupus erythematosus by restoring effector/regulatory T cells balance. ACS Nano 14:4414–4429

    Article  CAS  Google Scholar 

  2. Wang SF, Wu CJ, Luo JJ, Luo XL, Yuan R, Yang X (2020) Target-triggered configuration change of DNA tetrahedron for SERS assay of microRNA 122. Microchim Acta 187:460

    Article  CAS  Google Scholar 

  3. Ren K, Zhang Y, Zhang X, Liu Y, Yang M, Ju H (2018) In situ siRNA assembly in living cells for gene therapy with microRNA triggered cascade reactions templated by nucleic acids. ACS Nano 12:10797–10806

    Article  CAS  Google Scholar 

  4. Mozneb M, Mirtaheri E, Sanabria AO, Li CZ (2020) Bioelectronic properties of DNA, protein, cells and their applications for diagnostic medical devices. Biosens Bioelectron 167:112441

    Article  CAS  Google Scholar 

  5. Zhao XP, Liu FF, Hu WC, Younis MR, Wang C, Xia XH (2019) Biomimetic nanochannel-ionchannel hybrid for ultrasensitive and label-free detection of microRNA in cells. Anal Chem 91:3582–3589

    Article  CAS  Google Scholar 

  6. Liu J, Cui M, Zhou H, Yang W (2017) DNAzyme based nanomachine for in situ detection of microRNA in living cells. ACS Sens 2:1847–1853

    Article  CAS  Google Scholar 

  7. Luo X, Li Z, Wang G, He X, Shen X, Sun Q (2017) MicroRNA-Catalyzed cancer therapeutics based on DNA-Programmed nanoparticle complex. ACS Appl Mater Interfaces 9:33624–33631

    Article  CAS  Google Scholar 

  8. Bertucci A, Kim KH, Kang J, Zuidema JM, Lee SH (2019) Tumor-Targeting, microRNA-silencing porous silicon nanoparticles for ovarian cancer therapy. ACS Appl Mater Interfaces 11:23926–23937

    Article  CAS  Google Scholar 

  9. Da P, Li W, Lin X, Wang Y, Tang J, Zheng G (2014) Surface plasmon resonance enhanced real-time photoelectrochemical protein sensing by gold nanoparticle-decorated TiO2 nanowires. Anal Chem 86:6633–6639

    Article  CAS  Google Scholar 

  10. Hu F, Xu J, Chen Y (2017) Surface plasmon resonance imaging detection of sub-femtomolar microRNA. Anal Chem 89:10071–10077

    Article  CAS  Google Scholar 

  11. Sun X, Wang H, Jian Y, Lan F, Zhang L, Liu H (2018) Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection. Biosens Bioelectron 105:218–225

    Article  Google Scholar 

  12. Li XQ, Deng L, Ma FH, Yang MH (2020) A luminous off-on probe for the determination of 2,6-pyridinedicarboxylic acid as an anthrax biomarker based on water-soluble cadmium sulfide quantum dots. Microchim Acta 187:287

    Article  CAS  Google Scholar 

  13. Blidar A, Trashin S, Carrion EN, Gorun SM, Cristea C, De Wael K (2020) Enhanced photoelectrochemical detection of an analyte triggered by its concentration by a singlet oxygen-generating fluoro photosensitizer. ACS Sens 5:3501–3509

    Article  CAS  Google Scholar 

  14. Zhang XY, Han L, Yu LD, Wang XH, Ling Y, Li NB (2021) Crystal violet-sensitized direct z-scheme heterojunction coupled with a g-wire superstructure for photoelectrochemical sensing of Uracil-DNA glycosylase. ACS Appl Mater Interfaces 13:15881–15889

    Article  CAS  Google Scholar 

  15. Yuan Y, Hu T, Zhong X, Zhu M, Chai Y, Yuan R (2020) Highly sensitive photoelectrochemical biosensor based on quantum dots sensitizing Bi2Te3 nanosheets and DNA-Amplifying strategies. ACS Appl Mater Interfaces 12:22624–22629

    Article  CAS  Google Scholar 

  16. Wang B, Mei LP, Ma Y, Xu YT, Ren SW, Cao JT (2018) Photoelectrochemical-chemical-chemical redox cycling for advanced signal amplification: proof-of-concept toward ultrasensitive photoelectrochemical bioanalysis. Anal Chem 90:12347–12351

    Article  CAS  Google Scholar 

  17. Meng YC, Wang SS, Zhao JK, Hun X (2020) Photoelectrochemical aptasensor with low background noise. Microchim Acta 187:622

    Article  CAS  Google Scholar 

  18. Wang S, Zhao J, Zhang Y, Yan M, Zhang L, Ge S (2019) Photoelectrochemical biosensor of HIV-1 based on cascaded photoactive materials and triple-helix molecular switch. Biosens Bioelectron 139:111325

    Article  CAS  Google Scholar 

  19. Zhao CQ, Zhou J, Wu KW, Ding SN, Xu JJ, Chen HY (2020) Plasmonic enhanced gold nanoclusters-based photoelectrochemical biosensor for sensitive alkaline phosphatase activity analysis. Anal Chem 92:6886–6892

    Article  CAS  Google Scholar 

  20. Song Z, Fan GC, Li Z, Gao F, Luo X (2018) Universal design of selectivity-enhanced photoelectrochemical enzyme sensor: integrating photoanode with biocathode. Anal Chem 90:10681–10687

    Article  CAS  Google Scholar 

  21. Qin XF, Geng LP, Wang QQ, Wang Y (2019) Photoelectrochemical aptasensing of ofloxacin based on the use of a TiO2 nanotube array co-sensitized with a nanocomposite prepared from polydopamine and Ag2S nanoparticles. Microchim Acta 186:430

    Article  Google Scholar 

  22. Wang Y, Bian F, Qin XF, Wang QQ (2018) Visible light photoelectrochemical aptasensor for chloramphenicol by using a TiO2 nanorod array sensitized with Eu(III)-doped CdS quantum dots. Microchim Acta 185:161

    Article  Google Scholar 

  23. Gao B, Zhao X, Liang Z, Wu Z, Wang W, Han D (2021) CdS/TiO2 nanocomposite-based photoelectrochemical sensor for a sensitive determination of nitrite in principle of etching reaction. Anal Chem 93:820–827

    Article  CAS  Google Scholar 

  24. Beketova D, Motola M, Sopha H, Michalicka J, Cicmancova V, Dvorak F (2020) One-Step decoration of TiO2 nanotubes with Fe3O4 nanoparticles: synthesis and photocatalytic and magnetic properties. ACS Appl Nano Mater 3:1553–1563

    Article  CAS  Google Scholar 

  25. Dashtian K, Ghaedi M, Hajati S (2019) Photo-sensitive Pb5S2I6 crystal incorporated polydopamine biointerface coated on nanoporous TiO2 as an efficient signal-on photoelectrochemical bioassay for ultrasensitive detection of Cr(VI) ions. Biosens Bioelectron 132:105–114

    Article  CAS  Google Scholar 

  26. Haidry AA, Xie L, Wang Z, Zavabeti A, Li Z, Plecenik T (2019) Remarkable improvement in hydrogen sensing characteristics with Pt/TiO2 interface control. ACS Sens 4:2997–3006

    Article  CAS  Google Scholar 

  27. Chen Y, Zhang S, Dai H, Hong Z, Lin Y (2020) A multiple mixed TiO2 mesocrystal junction based PEC-colorimetric immunoassay for specific recognition of lipolysis stimulated lipoprotein receptor. Biosens Bioelectron 148:111809

    Article  CAS  Google Scholar 

  28. Chang S, Zhao Y, Tang J, Bai Z, Zhao L, Zhong H (2020) Balanced carrier injection and charge separation of CuInS2 quantum dots for bifunctional light-emitting and photodetection devices. J Phy Chem C 124:6554–6561

    Article  CAS  Google Scholar 

  29. Shen F, Que W, Liao Y, Yin X (2011) Photocatalytic activity of TiO2 nanoparticles sensitized by CuInS2 quantum dots. Ind Eng Chem Res 50:9131–9137

    Article  CAS  Google Scholar 

  30. Han M, Jia J, Wang W (2016) Pulsed laser deposition of a Bi2S3/CuInS2/TiO2 cascade structure for high photoelectrochemical performance. RSC Adv 6:70952–70959

    Article  CAS  Google Scholar 

  31. Yuan H, Liu F, Xue G, Liu H, Wang Y, Zhao Y (2021) Laser patterned and bifunctional Ni@N-doped carbon nanotubes as electrocatalyst and photothermal conversion layer for water splitting driven by thermoelectric device. Appl Catal B 283:119647–119656

    Article  CAS  Google Scholar 

  32. Zhao LL, Liu Z, Chen D, Liu F, Yang ZY, Li X, Yu HH, Liu H, Zhou WJ (2021) Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano Micro Lett 2311–6706

  33. Zhang F, Chen Y, Zhou W, Ren C, Gao H, Tian G (2019) Hierarchical SnS2/CuInS2 nanosheet heterostructure films decorated with C60 for remarkable photoelectrochemical water splitting. ACS Appl Mater Interfaces 11:9093–9101

    Article  CAS  Google Scholar 

  34. Li HB, Li J, Xu Q, Hu XY (2011) Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential photoelectrochemical sensing of organophosphorus pesticide chlopyrifos. Anal Chem 83:9681–9686

    Article  CAS  Google Scholar 

  35. Li HB, Li J, Xu Q, Hu XY (2011) Co3O4 -Au polyhedron mimic peroxidase- and cascade enzyme-assisted cycling process-based photoelectrochemical biosensor for monitoring of miRNA-141. Chem Eng J 406:126892

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22074053, 21775055, 21874055); A project of Shandong Province Higher Educational Youth Innovation Science and Technology Program (2020GXRC047, 2019KJC016); The Project of “20 items of University” of Jinan (2018GXRC001); the Taishan Scholars program and Case-by-Case Project for Top Outstanding Talents of Jinan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peihua Zhu, Weijia Zhou or Shenguang Ge.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1302 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, C., Wang, X., Xue, F. et al. Laser ablative TiO2 and tremella-like CuInS2 nanocomposites for robust and ultrasensitive photoelectrochemical sensing of let-7a. Microchim Acta 189, 145 (2022). https://doi.org/10.1007/s00604-022-05178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05178-9

Keywords

Navigation