Skip to main content
Log in

Rapid color-fading colorimetric sensing of Hg in environmental samples: regulation mechanism from DNA dimension

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

It was found that dimension change of aptamer DNA significantly weakened the mimicking activity of gold nanozyme, which was contrary to previous research. Based on this, a rapid colorimetric method for the detection of low concentrations of mercury in environmental media was fabricated. It was observed that 40 nM Hg2+ causes color changes in solution. The detection limit of absorbance measurements was estimated to be 9.3 × 10–11 M. The assay was fast and could complete a single test in half an hour. The detection results for real environment samples confirmed the reliability of the colorimetric analysis in practical application. The proposed assay provides an alternative method for real-time monitoring of mercury in the environment. In particular, the charge effect on the affinity of nanozyme consummated the DNA regulation mechanism for the simulated enzyme activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang LX, Zhang YY, Wang FF, Luo ZD, Guo SJ, Strähle U (2020) Toxicity of mercury: molecular evidence. Chemosphere 245:125586

    Article  CAS  Google Scholar 

  2. Song YH, Ma QF, Cheng HY, Liu JH, Wang YC (2021) Simultaneous enrichment of inorganic and organic species of lead and mercury in pg L-1 levels by solid phase extraction online combined with high performance liquid chromatography and inductively coupled plasma mass spectrometry. Anal Chim Acta 1157:338388

    Article  CAS  Google Scholar 

  3. Shih TT, Chen JY, Luo YT, Lin CH, Liu YH, Su YA, Chao PC, Sun YC (2019) Development of a titanium dioxide-assisted preconcentration/on-site vapor-generation chip hyphenated with inductively coupled plasma-mass spectrometry for online determination of mercuric ions in urine samples. Anal Chim Acta 1063(31):82–90

    Article  CAS  Google Scholar 

  4. Sogame Y, Tsukagoshi A (2020) Development of a liquid chromatography-inductively coupled plasma mass spectrometry method for the simultaneous determination of methylmercury and inorganic mercury in human blood. J Chromatogr B 1136:121855

    Article  CAS  Google Scholar 

  5. Volkov DS, Proskurnin MA, Korobov MV (2014) Survey study of mercury determination in detonation nanodiamonds by pyrolysis flameless atomic absorption spectroscopy. Diam Relat Mater 50:60–65

    Article  CAS  Google Scholar 

  6. Liu YC, Zou J, Luo B, Yu HR, Zhao ZG, Xia H (2021) Ivy extract-assisted photochemical vapor generation for sensitive determination of mercury by atomic fluorescence spectrometry. Microchem J 169:106547

    Article  CAS  Google Scholar 

  7. Zheng H, Hong JJ, Luo XL, Li S, Wang MX, Yang BY, Wang M (2019) Combination of sequential cloud point extraction and hydride generation atomic fluorescence spectrometry for preconcentration and determination of inorganic and methyl mercury in water samples. Microchem J 145:806–812

    Article  CAS  Google Scholar 

  8. Huang DL, Liu XG, Lai C, Qin L, Zhang C, Yi H, Zeng GM, Li B, Deng R, Liu SY, Zhang YJ (2018) Colorimetric determination of mercury(II) using gold nanoparticles and double ligand exchange. Microchim Acta 186:31

    Article  Google Scholar 

  9. Li L, Li BX, Qi YY, Jin Y (2009) Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal Bioanal Chem 393(8):2051–2057

    Article  CAS  Google Scholar 

  10. Lian Q, Liu H, Zheng XF, Li X, Zhang FJ, Gao J (2019) Enhanced peroxidase-like activity of CuO/Pt nanoflowers for colorimetric and ultrasensitive Hg2+ detection in water sample. Appl Surf Sci 483(31):551–561

    Article  CAS  Google Scholar 

  11. Liu R, Zuo L, Huang XR, Liu SM, Yang GY, Li SY, Lv CY (2019) Colorimetric determination of lead(II) or mercury(II) based on target induced switching of the enzyme-like activity of metallothionein-stabilized copper nanoclusters. Microchim Acta 186:250

    Article  Google Scholar 

  12. Qi YY, Ma JX, Chen XD, Xiu FR, Chen YT, Lu YW (2020) Practical aptamer-based assay of heavy metal mercury ion in contaminated environmental samples: convenience and sensitivity. Anal Bioanal Chem 412:439–448

    Article  CAS  Google Scholar 

  13. Qi YY, Song DD, Chen YT (2021) Colorimetric oligonucleotide-based sensor for ultra-low Hg2+ in contaminated environmental medium: convenience, sensitivity and mechanism. Sci Total Environ 766:142579

    Article  CAS  Google Scholar 

  14. Wang YW, Liu Q, Wang L, Tang S, Yang HH, Song H (2018) A colorimetric mercury(II) assay based on the Hg(II)-stimulated peroxidase mimicking activity of a nanocomposite prepared from graphitic carbon nitride and gold nanoparticles. Microchim Acta 186:7

    Article  Google Scholar 

  15. Wang JJ, Zhou PL, Tao H, Wang XL, Wu YG (2020) Oligonucleotide-induced regulation of the oxidase-mimicking activity of octahedral Mn3O4 nanoparticles for colorimetric detection of heavy metals. Microchim Acta 187:99

    Article  CAS  Google Scholar 

  16. Zhang Y, Ju P, Sun LP, Wang Z, Zhai XF, Jiang F, Sun CJ (2020) Colorimetric determination of Hg2+ based on the mercury-stimulated oxidase mimetic activity of Ag3PO4 microcubes. Microchim Acta 187:422

    Article  CAS  Google Scholar 

  17. Guo XR, Huang JZ, Wei TB, Zeng Q, Wang LS (2020) Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots. J Hazard Mater 381:120969

    Article  CAS  Google Scholar 

  18. Li ZH, Sun HJ, Ma XY, Su RF, Sun R, Yang CY, Sun CY (2020) Label-free fluorescence “turn-on” strategy for mercury (II) detection based on the T-Hg2+-T configuration and the DNA-sensitized luminescence of terbium (III). Anal Chim Acta 1099(22):136–144

    Article  CAS  Google Scholar 

  19. Maimaitiyiming X, Shi C (2021) Poly(1,4-diethynylphenylene-4,6-pyrimidine)s for fluorescence detection of mercury(II) ion. Mater Chem Phys 257:123783

    Article  CAS  Google Scholar 

  20. Qi YY, Xiu FR, Yu GD, Huang LL, Li BX (2017) Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: a new signal amplification mechanism. Biosens Bioelectron 87(15):439–446

    Article  CAS  Google Scholar 

  21. Chen ZY, Gupta A, Chattopadhyay S (2021) Detection of mercury in spiked cosmetics by surface enhanced Raman spectroscopy using silver shelled iron oxide nanoparticles. Sensor Actuat B: Chem 337:129788

    Article  CAS  Google Scholar 

  22. Zhao YB, Yamaguchi Y, Ni Y, Li MD, Dou XM (2020) A SERS-based capillary sensor for the detection of mercury ions in environmental water. Spectrochim Acta A 233:118193

    Article  CAS  Google Scholar 

  23. Teodoro KB, Migliorini FL, Facure MH, Correa DS (2019) Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury(II). Carbohy Polym 207(1):747–754

    Article  CAS  Google Scholar 

  24. Salandari N, Ensafi AA, Rezaei B (2021) Ultra-sensitive electrochemical aptasensor based on zeolitic imidazolate framework-8 derived Ag/Au core-shell nanoparticles for mercury detection in water samples. Sensor Actuat B: Chem 331:129426

    Article  Google Scholar 

  25. Zou YS, Zhang YL, Xie ZZ, Luo SY, Zeng YM, Chen QZ, Liu GK, Tian ZQ (2019) Improved sensitivity and reproducibility in electrochemical detection of trace mercury (II) by bromide ion & electrochemical oxidation. Talanta 203(1):186–193

    Article  CAS  Google Scholar 

  26. Qi YY, Li BX (2011) A sensitive, label-free, aptamer-based biosensor using a gold nanoparticle-initiated chemiluminescence system. Chem Eur J 17:1642–1648

    Article  CAS  Google Scholar 

  27. Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodifed gold nanoparticles. Proc Natl Acad Sci USA. 101(39):14036–14039

    Article  CAS  Google Scholar 

  28. Hizir MS, Top M, Balcioglu M, Rana M, Robertson NM, Shen F, Sheng J, Yigit MV (2016) Multiplexed activity of perAuxidase: DNA-capped AuNPs act as adjustable peroxidase. Anal Chem 88(1):600–605

    Article  CAS  Google Scholar 

  29. Yang Y, Yin YG, Li XL, Wang S, Dong YY (2020) Development of a chimeric aptamer and an AuNPs aptasensor for highly sensitive and specific identification of Aflatoxin B1. Sensor Actuat B: Chem 319:128250

    Article  CAS  Google Scholar 

  30. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed Engl 43(33):4300–4302

    Article  CAS  Google Scholar 

  31. Song ZQ, Xiu F-R, Qi YY (2022) Degradation and partial oxidation of waste plastic express packaging bags in supercritical water: Resources transformation and pollutants removal. J Hazard Mater 423:127018

  32. Zhang ZF, Cui H, Lai CZ, Liu LJ (2005) Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem 77:3324–3329

    Article  CAS  Google Scholar 

  33. Huang K, Yang H, Zhou ZG, Yu MX, Li FY, Gao X, Yi T, Huang CH (2008) Multisignal chemosensor for Cr3+ and its application in bioimaging. Org Lett 10(12):2557–2560

    Article  CAS  Google Scholar 

  34. Wu Y, Zheng JW, Li Z, Zhao YR, Zhang Y (2009) A novel reagentless amperometric immunosensor based on gold nanoparticles/TMB/Nafion-modified electrode. Biosens Bioelectron 24(3):1389–1393

    Article  CAS  Google Scholar 

  35. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DG, Perrett S, Yan XY (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (No. 21605018) and the Natural Science Basic Research Project of Shaanxi Province of China (No. 2020JM-528 and No. 2021JZ-52).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Qi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 603 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Wang, Y., Chen, Y. et al. Rapid color-fading colorimetric sensing of Hg in environmental samples: regulation mechanism from DNA dimension. Microchim Acta 189, 76 (2022). https://doi.org/10.1007/s00604-022-05177-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05177-w

Keywords

Navigation