Skip to main content
Log in

Colorimetric detection of sulfamethazine based on target resolved calixarene derivative stabilized gold nanoparticles aggregation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Sulfamethazine (SMZ) is one of the most used broad-spectrum antibiotics owing to its low cost and high efficacy towards bacterial diseases. This workreports a novel label-free SMZ sensor based on para-sulfonatocalix[4]arene (pSC4) capped gold nanoparticles (pSC4-AuNPs) for colorimetric detection through the host–guest interaction. The existence of SMZ resulted in the aggregation of pSC4-AuNPs and can be observed through colorimetric assay. A good linear relationship in the range 2.5 ~ 20 nM was obtained with a correlation coefficient of 0.9908. The limit of detection for SMZ was 1.39 nM. High recoveries (90.18–107.06%) were obtained, and RSD ranged from 1.21 to 2.05%. The color changes can be observed from red to gray within 10 min. Combining the supermolecule’s recognition and AuNP’s optical performance, the method paves a new, easy, and rapid way for small target sensing.

Highlights

  • Supermolecule-modified AuNPs were prepared by using one-step method.

  • Quantitative detection for SMZ was achieved by simple visual and colorimetric detection.

  • The highly sensitive determination is attributed for the host-guest recognition with a low detection limit of 1.39 nM.

AbstractSection Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guo XY, Shen XF, Zhang M et al (2017) Sorption mechanisms of sulfamethazine to soil humin and its subfractions after sequential treatments. Environ Pollut 221:266–275

    Article  CAS  Google Scholar 

  2. Fry H, Mietle K, Mahnert E et al (2017) Interlaboratory validation of an LC-MS/MS method for the determination of melamine and cyanuric acid in animal feed. Food Addit Contam: PartA 34(8):1320–1332

    Article  CAS  Google Scholar 

  3. Kowalski P, Plenis A, Oledzka I et al (2011) Optimization and validation of the micellar electrokinetic capillary chromatographic method for simultaneous determination of sulfonamide and amphenicol-type drugs in poultry tissue. J Pharmaceut Biomed 54:160–167

    Article  CAS  Google Scholar 

  4. Zhao YJ, Tang MM, Liao QB et al (2018) Disposable MoS2 arrayed MALDI MS Chip for high-throughput and rapid quantification of sulfonamides in multiple real samples. ACS Sensor 3(4):806–814

    Article  CAS  Google Scholar 

  5. Kivits T, Broers H P, Beeltje H, et al (2018) Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environ Pollut 241:988–998

    Article  CAS  Google Scholar 

  6. Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14(3):236–243

    Article  CAS  Google Scholar 

  7. Cui EP, Gao F, Liu Y et al (2018) Amendment soil with biochar to control antibiotic resistance genes under unconventional water resources irrigation: Proceed with caution. Environ Pollut 240:475–484

    Article  CAS  Google Scholar 

  8. Wang S, Wang Z, Zhang L et al (2022) Adsorption and convenient ELISA detection of sulfamethazine in milk based on MOFs pretreatment. Food Chem 374:131712

    Article  CAS  Google Scholar 

  9. Chen YN, Liu LQ, Xu LG et al (2017) Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods. Nano Res 10(8):2833–2844

    Article  CAS  Google Scholar 

  10. Shelver WL, Shappell et al (2008) ELISA for sulfonamides and its application for screening in water contamination. J Agric Food Chem 56(15):6609–6615

    Article  CAS  Google Scholar 

  11. Pollap A, Kochana J (2019) Electrochemical immunosensors for antibiotic detection. Biosensors 9(2):61

    Article  CAS  Google Scholar 

  12. Yu LM, Song C, Zhang C et al (2018) Occurrence of sulfonamides in fish in the lower reaches of yangtze river, China and estimated daily intake for understanding human dietary exposure. Aquaculture 495:538–544

    Article  CAS  Google Scholar 

  13. Attar F, Shahpar MG, Rasti B et al (2019) Nanozymes with intrinsic peroxidase-like activities. J Mol Liq 278:130–144

    Article  CAS  Google Scholar 

  14. Ren JS, Qu XG (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412

    Article  Google Scholar 

  15. Wu JJX, Wang XY, Wang Q et al (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076

    Article  CAS  Google Scholar 

  16. Singh M, Singh S, Prasad S et al (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Bios 3(3):115–122

    Google Scholar 

  17. Zhao Y, Huang YC, Zhu H et al (2016) Three-in-One: sensing, self-assembly, and cascade catalysis of cyclodextrin modified gold nanoparticles. J Am Chem Soc 138(51):16645–16654

    Article  CAS  Google Scholar 

  18. Bassanetti I, Comotti A, Sozzani P et al (2014) Porous molecular crystals by macrocyclic coordination supramolecules. J Am Chem Soc 136(42):14883–14895

    Article  CAS  Google Scholar 

  19. Qu DH, Wang QC, Zhang QW et al (2015) Photoresponsive host-guest functional systems. Chem Rev 115:7543–7588

    Article  CAS  Google Scholar 

  20. Yang YW, Sun YL, Song N (2014) Switchable host-guest systems on surfaces. Acc Chem Res 47:1950–1960

    Article  CAS  Google Scholar 

  21. Hu JJ, Zhao JL, Zhu H et al (2021) AuNPs network structures as a plasmonic matrix for ultrasensitive immunoassay based on surface plasmon resonance spectroscopy. Sens Actuators B: Chem 340:129948

    Article  CAS  Google Scholar 

  22. Liu NM, Xing KY, Wang C et al (2018) Matrix effect of five kinds of meat on colloidal gold immunochromatographic assay for sulfamethazine detection. Anal Methods 10(37):4505–4510

    Article  CAS  Google Scholar 

  23. Zhang P, Shao CL, Zhang ZY et al (2011) In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3(8):3357–3363

    Article  CAS  Google Scholar 

  24. Zhu NF, Zhu YQ, Wang J et al (2019) A novel fluorescence immunoassay based on AgNCs and ALP for ultrasensitive detection of sulfamethazine (SMZ) in environmental and biological samples. Talanta 199:72–79

    Article  CAS  Google Scholar 

  25. Ma MF, Wen K, Beier RC et al (2016) Chemiluminescence resonance energy transfer competitive immunoassay employing hapten-functionalized quantum dots for the detection of sulfamethazine. ACS Appl Mater Interfaces 8(28):17745–17750

    Article  CAS  Google Scholar 

  26. Hoskins, C., Papachristou, A., Ho, T. M. H et al (2016) Investigation into drug solubilisation potential of sulfonated calix [4] resorcinarenes. J Nanomed Nanotechnol 7(2)

  27. Wang XX, Du DS, Dong HB et al (2018) para-sulfonatocalix[4]arene stabilized gold nanoparticles multilayers interfaced to electrodes through host-guest interaction for sensitive ErbB2 detection. Biosens Bioelectron 99:375–381

    Article  CAS  Google Scholar 

  28. Zou F, Wang XX, Qi FJ et al (2017) Magneto-plamonic nanoparticles enhanced surface plasmon resonance TB sensor based on recombinant gold binding antibody. Sens Actuators B: Chem 25:356–363

    Article  Google Scholar 

  29. Dong HB, Zou F, Hu XJ et al (2018) Analyte induced AuNPs aggregation enhanced surface plasmon resonance for sensitive detection of Paraquat. Biosens Bioelectron 117:605–612

    Article  CAS  Google Scholar 

  30. Wang X, Koh K, Chen H (2017) Colorimetric assay of butyrylcholinesterase activity based on para-sulfonatocalix [4] arene-modified gold nanoparticles. Sens Actuators B: Chem 251:869–876

    Article  CAS  Google Scholar 

  31. Xiong DJ, Chen ML, Li HB (2008) Synthesis of para-sulfonatocalix[4]arene-modified silver nanoparticles as colorimetric histidine probes. Chem Commun 7:880–882

    Article  Google Scholar 

  32. Dong HB, Hu XJ, Zhao JL et al (2018) Sensitive detection of fractalkine based on AuNPs and metal-organic frameworks composite at para-sulfonatocalix[4]arene-AuNPs assembled multilayer interface. Sens Actuators B: Chem 276:150–157

    Article  CAS  Google Scholar 

  33. Yang MY, Wu XY, Hu XL et al (2019) Electrochemical immunosensor based on Ag+-dependent CTAB-AuNPs for ultrasensitive detection of sulfamethazine. Biosens Bioelectron 144:111643

    Article  CAS  Google Scholar 

  34. Kou QM, Wu P, Sun Q et al (2021) Selection and truncation of aptamers for ultrasensitive detection of sulfamethazine using a fluorescent biosensor based on graphene oxide. Anal Bioanal Chem 413(3):901–909

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 61875114, 21776324), National Key R&D Program of China (2018YFD0800700), National Ten Thousand Talent Plan (2207080051), Key-Area Research and Development Program of Guangdong Province (2019B110209003), Guangdong Basic and Applied Basic Research Foundation (2019B1515120058, 2020A1515011149), the Fundamental Research Funds for the Central Universities (19lgzd25) and Hundred Talent Plan (201602) from Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Yan or Hongxia Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhijuan Niu and Yawen Liu has the same contributions.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 352 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Z., Liu, Y., Li, X. et al. Colorimetric detection of sulfamethazine based on target resolved calixarene derivative stabilized gold nanoparticles aggregation. Microchim Acta 189, 71 (2022). https://doi.org/10.1007/s00604-022-05176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05176-x

Keywords

Navigation